Câu hỏi:

22/10/2024 1,380 Lưu

Quỹ đạo của một vật được ném lên từ gốc O (được chọn là điểm ném) trong mặt phẳng toạ độ Oxy là một parabol có phương trình \(y =  - \frac{1}{{10}}{x^2} + x\), trong đó x (mét) là khoảng cách theo phương ngang trên mặt đất từ vị trí của vật đến gốc O, y (mét) là độ cao của vật so với mặt đất (tham khảo hình vẽ). Tính khoảng cách từ điểm chạm đất sau khi bay của vật đến gốc O (khoảng cách này được gọi là tầm xa của quỹ đạo).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải

Lời giải

Vật chạm đất khi độ cao bằng 0

\( \Leftrightarrow  - \frac{1}{{10}}{x^2} + x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\)

Vậy khoảng cách từ điểm chạm đất sau khi bay của vật đến gốc O bằng 10 mét)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải

Cấp số cộng 

Lời giải

Ta có chiều dài của mỗi mặt cầu thang theo thứ tự lập thành một cấp số cộng với số hạng đầu tiên là \({u_1} = 189\), công sai \(d =  - 7\) và số hạng cuối cùng là \({u_n} = 63\).

Khi đó áp dụng công thức tính số hạng tồng quát ta có:

\({u_n} = {u_1} + (n - 1)d \Leftrightarrow 63 = 189 - 7(n - 1) \Leftrightarrow n = 19\)

Tổng chiều dài của 19 hình chữ nhật đó là: .

Diện tích của 19 bậc thang là:

Tổng số tiền để làm cầu thang đó là:  đồng.\({S_{19}} = 19.\frac{{{u_1} + {u_{19}}}}{2} = 2394\)

Lời giải

Phương pháp giải

Lời giải

Gọi số cần tìm có dạng \[m = \overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \] với \({a_i} \in \{ 0;1;2;3;4;5;6;7;8;9\} ,\,\,{a_1} \ne 0\) và \(i \in \{ 1;2;3;4;5;6\} \).

Vì các chữ số \({a_1},{a_2},{a_3},{a_4},{a_5},{a_6}\) là đôi một khác nhau, có nhiều hơn một chữ số lẻ và đồng thời trong đó có hai chữ số kề nhau không cùng là số lẻ nên ta xét hai trường hợp sau:

1. Trường hợp 1. Có 4 chữ số chẵn và 2 chữ số lẻ.

- Chữ số 0 đứng ở vị trí bất kì.

- Lấy 4 chữ số chẵn và 2 chữ số lẻ có \(C_5^4.C_5^2\).

- Xếp 4 chữ số chẵn có 4!.

- Xếp 2 chữ số lẻ có \(A_5^2\).

Vậy trường hợp này có \(C_5^4.C_5^2.4!.A_5^2 = 24000\) số.

- Chữ số a1 = 0.

- Lấy thêm 3 chữ số chẵn; 2 chữ số lẻ có \(C_4^3.C_5^2\).

- Xếp 3 chữ số chẵn có 3!.

- Xếp 2 chữ số lẻ có \(A_4^2\).

Vậy trường hợp này có \(C_4^3.C_5^2.3!.A_4^2 = 2880\).

2. Trường hợp 2 . Có 3 chữ số chẵn và 3 chữ số lẻ.

- Chữ số 0 dứng ở vị trí bất kì.

- Lấy 3 chữ số chẵn và 3 chữ số lẻ có \(C_5^3.C_5^3\).

- Xếp 3 chữ số chẵn có 3!.

- Xếp 3 chữ số lẻ có \(A_4^3\).

Vậy trường hợp này có \(C_5^3.C_5^3.3!.A_4^3 = 14400\) số.

- Chữ số a1 = 0.

- Lấy thêm 2 chữ số chẵn; 3 chữ số lẻ có \(C_4^2.C_5^3\).

- Xếp 2 chữ số chẵn có 2!.

- Xếp 3 chữ số lẻ có \(A_3^3 = 3!\).

Vậy trường hợp này có \(C_4^2.C_5^3.2!.3! = 720\).

Vậy có (24000 − 2880) + (14400 − 720) = 34800 số thỏa mãn yêu cầu bài toán.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP