Câu hỏi:

22/10/2024 1,764

Xếp 6 người A, B, C, D, E, F vào ghế dài có 6 chỗ.

Kéo các ô sau thả vào vị trí thích hợp để được khẳng định đúng:

Media VietJack

1) Có    ....      cách xếp sao cho A và F ngồi ở hai đầu ghế.

2) Có ....    cách xếp sao cho A và F ngồi cạnh nhau.

3) Có    ......      cách xếp sao cho A và F không ngồi cạnh nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Có    48      cách xếp sao cho A và F ngồi ở hai đầu ghế.

2) Có    240   cách xếp sao cho A và F ngồi cạnh nhau.

3) Có    480      cách xếp sao cho A và F không ngồi cạnh nhau.

Phương pháp giải

1) Ưu tiên xếp A và F trước

2) Xếp A và F ngồi cạnh nhau ta ghép A và F thành 1 "bó" trước.

3) Đếm số cách xếp 6 người bất kì rồi đếm số cách xếp sao cho A và F ngồi cạnh nhau

Lời giải

1) Xếp A và F ở hai đầu ghế: có 2! cách xếp A và F

Các vị trí ở giữa: có 4! cách xếp

Vậy có 2!.4! = 48 cách xếp sao cho A và F ở hai đầu ghế.

2) Xếp A và F ngồi cạnh nhau ta ghép A và F thành 1 "bó": có 2 ! cách sắp xếp vị trí bên trong "bó"

Rồi mang sắp xếp 4 người còn lại và 1 "bó" trên ghế dài: ta được 5 ! cách xếp.

Vậy có 2!. 5! = 240 cách xếp sao cho A và F ngồi cạnh nhau.

3) Số cách xếp 6 người bất kì là 6! cách

Số cách xếp sao cho A và F ngồi cạnh nhau là 240 cách.

Vậy có 6! − 240 = 480 cách xếp sao cho A và F không ngồi cạnh nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải

Cấp số cộng 

Lời giải

Ta có chiều dài của mỗi mặt cầu thang theo thứ tự lập thành một cấp số cộng với số hạng đầu tiên là \({u_1} = 189\), công sai \(d =  - 7\) và số hạng cuối cùng là \({u_n} = 63\).

Khi đó áp dụng công thức tính số hạng tồng quát ta có:

\({u_n} = {u_1} + (n - 1)d \Leftrightarrow 63 = 189 - 7(n - 1) \Leftrightarrow n = 19\)

Tổng chiều dài của 19 hình chữ nhật đó là: .

Diện tích của 19 bậc thang là:

Tổng số tiền để làm cầu thang đó là:  đồng.\({S_{19}} = 19.\frac{{{u_1} + {u_{19}}}}{2} = 2394\)

Lời giải

Phương pháp giải

Lời giải

Gọi số cần tìm có dạng \[m = \overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \] với \({a_i} \in \{ 0;1;2;3;4;5;6;7;8;9\} ,\,\,{a_1} \ne 0\) và \(i \in \{ 1;2;3;4;5;6\} \).

Vì các chữ số \({a_1},{a_2},{a_3},{a_4},{a_5},{a_6}\) là đôi một khác nhau, có nhiều hơn một chữ số lẻ và đồng thời trong đó có hai chữ số kề nhau không cùng là số lẻ nên ta xét hai trường hợp sau:

1. Trường hợp 1. Có 4 chữ số chẵn và 2 chữ số lẻ.

- Chữ số 0 đứng ở vị trí bất kì.

- Lấy 4 chữ số chẵn và 2 chữ số lẻ có \(C_5^4.C_5^2\).

- Xếp 4 chữ số chẵn có 4!.

- Xếp 2 chữ số lẻ có \(A_5^2\).

Vậy trường hợp này có \(C_5^4.C_5^2.4!.A_5^2 = 24000\) số.

- Chữ số a1 = 0.

- Lấy thêm 3 chữ số chẵn; 2 chữ số lẻ có \(C_4^3.C_5^2\).

- Xếp 3 chữ số chẵn có 3!.

- Xếp 2 chữ số lẻ có \(A_4^2\).

Vậy trường hợp này có \(C_4^3.C_5^2.3!.A_4^2 = 2880\).

2. Trường hợp 2 . Có 3 chữ số chẵn và 3 chữ số lẻ.

- Chữ số 0 dứng ở vị trí bất kì.

- Lấy 3 chữ số chẵn và 3 chữ số lẻ có \(C_5^3.C_5^3\).

- Xếp 3 chữ số chẵn có 3!.

- Xếp 3 chữ số lẻ có \(A_4^3\).

Vậy trường hợp này có \(C_5^3.C_5^3.3!.A_4^3 = 14400\) số.

- Chữ số a1 = 0.

- Lấy thêm 2 chữ số chẵn; 3 chữ số lẻ có \(C_4^2.C_5^3\).

- Xếp 2 chữ số chẵn có 2!.

- Xếp 3 chữ số lẻ có \(A_3^3 = 3!\).

Vậy trường hợp này có \(C_4^2.C_5^3.2!.3! = 720\).

Vậy có (24000 − 2880) + (14400 − 720) = 34800 số thỏa mãn yêu cầu bài toán.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP