Câu hỏi:

22/10/2024 772

Một bộ ba số Pythagoras (còn gọi là bộ ba số Pytago hay bộ ba số Pythagore) gồm ba số nguyên dương a, b và c, sao cho \({a^2} + {b^2} = {c^2}\). Khi đó ta viết bộ ba đó là (a;b;c). Một bộ ba số Pythagoras được gọi là bộ ba số Pythagoras nguyên tố nếu a, b và c là các số nguyên tố cùng nhau.

Khẳng định nào sau đây đúng hay sai?

 

ĐÚNG

SAI

Bộ ba số (3;4;5) là bộ ba số Pytago nguyên tố

¡

¡

Hai số 153 và 185 có cùng thuộc 1 bộ ba số Pytago

¡

¡

Nếu (a, b, c) là bộ ba số Pytago, thì  cả bộ ba (ka, kb, kc) với số nguyên k bất kỳ cũng là Pytago

¡

¡

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 

ĐÚNG

SAI

Bộ ba số (3;4;5) là bộ ba số Pytago nguyên tố

¤

¡

Hai số 153 và 185 có cùng thuộc 1 bộ ba số Pytago

¤

¡

Nếu (a, b, c) là bộ ba số Pytago, thì  cả bộ ba (ka, kb, kc) với số nguyên k bất kỳ cũng là Pytago

¡

¤

Phương pháp giải

- Kiểm tra bộ ba có là số nguyên tố không

- Kiểm tra bộ ba số có nguyên tố cùng nhau không.

- Các số nguyên a;b;c được gọi là nguyên tố cùng nhau nếu ước chung lớn nhất của chúng bằng 1.

Lời giải

a) Ta thấy 52 = 32 + 42

Nên (3;4;5) là bộ ba số Pytago

Mà 3;4;5 có ước chung lớn nhất là 1 nên 3;4;5 là các số nguyên tố cùng nhau.

b)

TH1: Cả 2 số là các cạnh góc vuông

1532 + 1852 = 57634

Mà 57634 không là số chính phương nên loại

TH2: Có 1 số lớn nhất là cạnh huyền

1852 − 1532 = 1042

=> Thỏa mãn.

Hai số 153 và 185 có cùng thuộc 1 bộ ba số Pytago

c) Mệnh đề 3 sai vì với k = 0 thì (ka;kb;kc) không là bộ ba số Pytago.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải

Cấp số cộng 

Lời giải

Ta có chiều dài của mỗi mặt cầu thang theo thứ tự lập thành một cấp số cộng với số hạng đầu tiên là \({u_1} = 189\), công sai \(d =  - 7\) và số hạng cuối cùng là \({u_n} = 63\).

Khi đó áp dụng công thức tính số hạng tồng quát ta có:

\({u_n} = {u_1} + (n - 1)d \Leftrightarrow 63 = 189 - 7(n - 1) \Leftrightarrow n = 19\)

Tổng chiều dài của 19 hình chữ nhật đó là: .

Diện tích của 19 bậc thang là:

Tổng số tiền để làm cầu thang đó là:  đồng.\({S_{19}} = 19.\frac{{{u_1} + {u_{19}}}}{2} = 2394\)

Lời giải

Phương pháp giải

Lời giải

Gọi số cần tìm có dạng \[m = \overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \] với \({a_i} \in \{ 0;1;2;3;4;5;6;7;8;9\} ,\,\,{a_1} \ne 0\) và \(i \in \{ 1;2;3;4;5;6\} \).

Vì các chữ số \({a_1},{a_2},{a_3},{a_4},{a_5},{a_6}\) là đôi một khác nhau, có nhiều hơn một chữ số lẻ và đồng thời trong đó có hai chữ số kề nhau không cùng là số lẻ nên ta xét hai trường hợp sau:

1. Trường hợp 1. Có 4 chữ số chẵn và 2 chữ số lẻ.

- Chữ số 0 đứng ở vị trí bất kì.

- Lấy 4 chữ số chẵn và 2 chữ số lẻ có \(C_5^4.C_5^2\).

- Xếp 4 chữ số chẵn có 4!.

- Xếp 2 chữ số lẻ có \(A_5^2\).

Vậy trường hợp này có \(C_5^4.C_5^2.4!.A_5^2 = 24000\) số.

- Chữ số a1 = 0.

- Lấy thêm 3 chữ số chẵn; 2 chữ số lẻ có \(C_4^3.C_5^2\).

- Xếp 3 chữ số chẵn có 3!.

- Xếp 2 chữ số lẻ có \(A_4^2\).

Vậy trường hợp này có \(C_4^3.C_5^2.3!.A_4^2 = 2880\).

2. Trường hợp 2 . Có 3 chữ số chẵn và 3 chữ số lẻ.

- Chữ số 0 dứng ở vị trí bất kì.

- Lấy 3 chữ số chẵn và 3 chữ số lẻ có \(C_5^3.C_5^3\).

- Xếp 3 chữ số chẵn có 3!.

- Xếp 3 chữ số lẻ có \(A_4^3\).

Vậy trường hợp này có \(C_5^3.C_5^3.3!.A_4^3 = 14400\) số.

- Chữ số a1 = 0.

- Lấy thêm 2 chữ số chẵn; 3 chữ số lẻ có \(C_4^2.C_5^3\).

- Xếp 2 chữ số chẵn có 2!.

- Xếp 3 chữ số lẻ có \(A_3^3 = 3!\).

Vậy trường hợp này có \(C_4^2.C_5^3.2!.3! = 720\).

Vậy có (24000 − 2880) + (14400 − 720) = 34800 số thỏa mãn yêu cầu bài toán.

Câu 4

Từ khai triển biểu thức \({(x + 1)^{2023}}\) thành đa thức. Tổng các hệ số của đa thức là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh \(a\sqrt 2 \), biết các cạnh bên tạo với đáy một góc \({60^^\circ }\). Giá trị lượng giác tang của góc giữa hai mặt phẳng \((SAC)\) và \((SCD)\) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Đâu là lý do mà từ lâu nay người ta lại định giết mực?

Chọn đáp án đúng nhất:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay