Câu hỏi:
22/10/2024 123Cho hình chóp S.ABC có đáy là tam giác vuông tại A, cạnh huyền BC = 6(cm), các cạnh bên cùng tạo với đáy một góc 600.
Kéo biểu thức trong các ô thả vào vị trí thích hợp trong các câu sau:
Các cạnh bên của hình chóp bằng ...
Diện tích mặt cầu ngoại tiếp hình chóp S.ABC bằng ....
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Các cạnh bên của hình chóp bằng 6cm
Diện tích mặt cầu ngoại tiếp hình chóp S.ABC bằng 48
Phương pháp giải
- Gọi H là hình chiếu vuông góc của S lên mặt phẳng (ABC). Gọi O là trung điểm của BC.
- Tam giác ABC vuông tại A,O là trung diểm của cạnh huyền BC, suy ra OA = OB = OC
- Chứng minh ΔSHA = ΔSHB = ΔSHC
- Trong ΔSAH dựng trung trực của SA cắt SH tại I.
- Chứng minh IA = IB = IC = IS.
Lời giải
Gọi H là hình chiếu vuông góc của S lên mặt phẳng (ABC). Gọi O là trung điểm của BC.
Tam giác ABC vuông tại A,O là trung diểm của cạnh huyền BC, suy ra OA = OB = OC (1).
Xét các tam giác ΔSHA, ΔSHB, ΔSHC có:
\(\left\{ {\begin{array}{*{20}{l}}{{\rm{ SH}}\,\,{\rm{chung }}}\\{\widehat {SHA} = \widehat {SHB} = \widehat {SHC} = {{90}^^\circ } \Rightarrow \Delta SHA = \Delta SHB = \Delta SHC\,\,({\rm{g}}{\rm{.c}}{\rm{.g) }}}\\{\widehat {SAH} = \widehat {SBH} = \widehat {SCH} = {{60}^^\circ }}\end{array}} \right.\)
\( \Rightarrow HA = HB = HC\)
\(\widehat {SAH} = \widehat {SBH} = \widehat {SCH} = {60^^\circ }\)
⇒ ΔSBC đều cạnh bằng 6 (cm)
Từ (1) và (2) suy ra H trùng O. Khi đó SH là trục đường tròn ngoại tiếp ΔABC
Trong ΔSAH dựng trung trực của SA cắt SH tại I.
Khi đó IA = IB = IC = IS. Vậy I là tâm mặt cầu ngoại tiếp hình chóp S.ABC.
ΔSBC đều cạnh bằng 6(cm) \( \Rightarrow SO = 3\sqrt 3 \Rightarrow SI = \frac{2}{3}.SO = \frac{2}{3}.3\sqrt 3 = 2\sqrt 3 \) .
Diện tích mặt cầu ngoại tiếp hình chóp S.ABC là: \(S = 4\pi {(2\sqrt 3 )^2} = 48\pi \left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho biết \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {a{x^2} + 1} - bx - 2}}{{{x^3} - 3x + 2}}(a,b \in \mathbb{R})\) có kết quả là một số thực. Giá trị của biểu thức \({a^2} + {b^2}\) bằng?
Câu 3:
Phần tư duy đọc hiểu
Hoàn thành câu hỏi bằng cách chọn đáp án Đúng hoặc Sai.
Văn bản được mở đầu bằng cách kể lại một câu chuyện ngụ ngôn.
Đúng hay sai?
Câu 4:
Cho dãy số un xác định bởi: \({u_1} = 1,\,\,{u_{n + 1}} = 2{u_n} + 3\,\,(n \ge 2)\) .
Các khẳng định sau là đúng hay sai?
|
ĐÚNG |
SAI |
un lập thành cấp số nhân. |
¡ |
¡ |
Số hạng tổng quát của dãy là 2n+1 − 3 |
¡ |
¡ |
Câu 5:
Bạn Hải lấy một cặp số tự nhiên phân biệt rồi tính số dư khi chia tổng lập phương của hai số cho tổng các chữ số của số lớn trong hai số đó. Nếu làm theo đúng quy tắc của bạn Hải với cặp số (31, 175) ta thu được kết quả bằng.
Câu 6:
Cho tập hợp A = {1;2;3;4;5}. Gọi S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A. Chọn ngẫu nhiên một số từ tập S, xác xuất để số được chọn có tổng các chữ số bằng 10 được viết dưới dạng phân số tối giản \(\frac{a}{b}\,\,(a,b \in \mathbb{Z}).\)
Tổng a + b bằng
Câu 7:
Cho tập hợp A = {1;2;3;4;5;6}.
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
|
ĐÚNG |
SAI |
Tập hợp A có 64 tập con khác rỗng. |
¡ |
¡ |
Tập hợp A có 20 tập con có 3 phần tử. |
¡ |
¡ |
Số tập con có 2 phần tử của A bằng số tập con có 4 phần tử của A. |
¡ |
¡ |
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Top 5 đề thi Đánh giá năng lực trường ĐH Bách khoa Hà Nội năm 2023 - 2024 có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Khoa học tự nhiên - ĐH Bách khoa năm 2023 - 2024 có đáp án ( Đề 2)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 3)
Bộ 5 đề thi Đánh giá năng lực trường ĐH Bách khoa Hà Nội năm 2023 - 2024 có đáp án (Đề 2)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận