Câu hỏi:

22/10/2024 750

Cho hình chóp S.ABCD có đáy ABCD là một hình thang với đáy AD và BC. Biết AD = a,BC = b. Gọi I và J lần lượt là trọng tâm các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI)  cắt SA, SD tại P, Q. Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Ta có  I(SAD)I(SAD)(IBC).

Vậy  AD(SAD)BC(IBC)ADBC(SAD)(IBC)=PQPQADBC (1)

Tương tự J(SBC)J(SBC)(ADJ)

Vậy AD(ADJ)BC(SBC)ADBC(SBC)(ADJ)=MNMNADBC  (2)

Từ (1) và (2) suy ra MN ∥ PQ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: “28”

Phương pháp giải

Vì S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A

Lời giải

Vì S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A nên ta tính số phần tử thuộc tập Snhư sau:

+ Số các số thuộc S có 3 chữ số là \(A_5^3\).

+ Số các số thuộc S có 4 chữ số là \(A_5^4\).

+ Số các số thuộc S có 5 chữ số là \(A_5^5\).

Suy ra số phần tử của tập S là \(A_5^3 + A_5^4 + A_5^5 = 300.\)

Số phần tử của không gian mẫu là \({n_\Omega } = C_{300}^1 = 300\)

Gọi X là biến cố “Số được chọn có tổng các chữ số bằng 10”. Các tập con của A có tổng số phần tử bằng 10 là A1 = {1;2;3;4}, A2 = {2;3;5}, A3 = {1;4;5}.

+ Từ A1 lập được các số thuộc S là 4!.

+ Từ A2 lập được các số thuộc S là 3!.

+ Từ A3 lập được các số thuộc S là 3!.

Suy ra số phần tử của biến cố X là nX = 4! + 3! + 3! = 36.

Vậy xác suất cần tính \(P(X) = \frac{{{n_X}}}{{{n_\Omega }}} = \frac{{36}}{{300}} = \frac{3}{{25}}.\)

Lời giải

Phương pháp giải

Dạng vô định ∞ - ∞

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {a{x^2} + 1}  - bx - 2}}{{{x^3} - 3x + 2}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {a{x^2} + 1}  - bx - 2}}{{{{(x - 1)}^2}(x + 2)}} = L,\) với \(L \in \mathbb{R}\)(*)

Khi đó \(\sqrt {a + 1}  - b - 2 = 0 \Leftrightarrow \sqrt {a + 1}  = b + 2 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b \ge  - 2}\\{a + 1 = {b^2} + 4b + 4}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b \ge  - 2}\\{a = {b^2} + 4b + 3}\end{array}} \right.\)

Thay  \(a = {b^2} + 4b + 3\) vào (*):

\(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {a{x^2} + 1}  - bx - 2}}{{{x^3} - 3x + 2}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {\left( {{b^2} + 4b + 3} \right){x^2} + 1}  - bx - 2}}{{{{(x - 1)}^2}(x + 2)}}\)

\( = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {{b^2} + 4b + 3} \right){x^2} + 1 - {{(bx + 2)}^2}}}{{{{(x - 1)}^2}(x + 2)\left[ {\sqrt {\left( {{b^2} + 4b + 3} \right){x^2} + 1}  + bx + 2} \right]}}\)

\( = \mathop {\lim }\limits_{x \to 1} \frac{{(4b + 3){x^2} - 4bx - 3}}{{{{(x - 1)}^2}(x + 2)\left[ {\sqrt {\left( {{b^2} + 4b + 3} \right){x^2} + 1}  + bx + 2} \right]}}\)

\( = \mathop {\lim }\limits_{x \to 1} \frac{{(4b + 3)x + 3}}{{(x - 1)(x + 2)\left[ {\sqrt {\left( {{b^2} + 4b + 3} \right){x^2} + 1}  + bx + 2} \right]}} = L,\,\,L \in \mathbb{R}\)

Khi đó: \((4b + 3) + 3 = 0 \Leftrightarrow b =  - \frac{3}{2} \Rightarrow a =  - \frac{3}{4}.\)

Vậy \({a^2} + {b^2} = \frac{{45}}{{16}}\)

Câu 3

Dung dịch nào có tính bazo nhất? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Biết hàm số \(f(x) = a{x^3} + b{x^2} + cx + d(a > 0)\) có đạo hàm là \(f'(x) > 0\) với \(\forall x \in \mathbb{R}\). Mệnh đề nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay