Câu hỏi:

22/10/2024 572

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

 

ĐÚNG

SAI

Chữ số tận cùng của \[{9^{{9^{10}}}}\]là 9

¡

¡

Số dư của 31000 khi chia cho 5 là 2

¡

¡

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 

ĐÚNG

SAI

Chữ số tận cùng của \[{9^{{9^{10}}}}\]là 9

¤

¡

Số dư của 31000 khi chia cho 5 là 2

¡

¤

Phương pháp giải

a) Tìm chữ số tận cùng của một số là tìm dư trong phép chia số đó cho 10 .

\(a \equiv x(\,\bmod \,m)\)

\(b \equiv y(\,\bmod \,m)\)

\(a.b \equiv x.y(\,\bmod \,m)\)

\({a^n} \equiv {x^n}(\,\bmod \,m)\)

b) Tìm hai chữ số tận cùng của một số là tìm dư trong phép chia số đó cho 100 .

Lời giải

a) Tìm chữ số tận cùng của một số là tìm dư trong phép chia số đó cho 10 . Vì \({9^{2n + 1}} = {9.81^n} \equiv 9(\,\bmod \,10)\).

Do \({9^{10}}\) là số lẻ nên số \({9^{{9^{10}}}}\) có chữ số tận cùng là 9 .

b) Tìm hai chữ số tận cùng của một số là tìm dư trong phép chia số đó cho 100 .

Ta có \({3^4} = 81 \equiv  - 19(\,\bmod \,100) \Rightarrow {3^8} \equiv {( - 19)^2}(\,\bmod \,100)\)

Mà \({( - 19)^2} = 361 \equiv 61(\,\bmod \,100)\)

Vậy \({3^8} \equiv 61(\,\bmod \,100)\)

\({3^{10}} \equiv 61.9 \equiv 549 \equiv 49(\,\bmod \,100)\)

\({3^{20}} \equiv {49^2} \equiv 01(\,\bmod \,100)\quad \left( {{\mathop{\rm do}\nolimits} \,\,{{49}^2} = 2401 = 24.100 + 1} \right)\)

Do đó \({3^{1000}} \equiv 01(\,\bmod \,100)\) nghĩa là hai chữ số sau cùng của \({3^{1000}}\) là 01.

Tất cả các số là bội của 100 đều chia hết cho 5 , do đó số dư khi chia \({3^{1000}}\) cho 5 là 1

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: “28”

Phương pháp giải

Vì S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A

Lời giải

Vì S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A nên ta tính số phần tử thuộc tập Snhư sau:

+ Số các số thuộc S có 3 chữ số là \(A_5^3\).

+ Số các số thuộc S có 4 chữ số là \(A_5^4\).

+ Số các số thuộc S có 5 chữ số là \(A_5^5\).

Suy ra số phần tử của tập S là \(A_5^3 + A_5^4 + A_5^5 = 300.\)

Số phần tử của không gian mẫu là \({n_\Omega } = C_{300}^1 = 300\)

Gọi X là biến cố “Số được chọn có tổng các chữ số bằng 10”. Các tập con của A có tổng số phần tử bằng 10 là A1 = {1;2;3;4}, A2 = {2;3;5}, A3 = {1;4;5}.

+ Từ A1 lập được các số thuộc S là 4!.

+ Từ A2 lập được các số thuộc S là 3!.

+ Từ A3 lập được các số thuộc S là 3!.

Suy ra số phần tử của biến cố X là nX = 4! + 3! + 3! = 36.

Vậy xác suất cần tính \(P(X) = \frac{{{n_X}}}{{{n_\Omega }}} = \frac{{36}}{{300}} = \frac{3}{{25}}.\)

Lời giải

Phương pháp giải

Dạng vô định ∞ - ∞

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {a{x^2} + 1}  - bx - 2}}{{{x^3} - 3x + 2}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {a{x^2} + 1}  - bx - 2}}{{{{(x - 1)}^2}(x + 2)}} = L,\) với \(L \in \mathbb{R}\)(*)

Khi đó \(\sqrt {a + 1}  - b - 2 = 0 \Leftrightarrow \sqrt {a + 1}  = b + 2 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b \ge  - 2}\\{a + 1 = {b^2} + 4b + 4}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b \ge  - 2}\\{a = {b^2} + 4b + 3}\end{array}} \right.\)

Thay  \(a = {b^2} + 4b + 3\) vào (*):

\(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {a{x^2} + 1}  - bx - 2}}{{{x^3} - 3x + 2}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {\left( {{b^2} + 4b + 3} \right){x^2} + 1}  - bx - 2}}{{{{(x - 1)}^2}(x + 2)}}\)

\( = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {{b^2} + 4b + 3} \right){x^2} + 1 - {{(bx + 2)}^2}}}{{{{(x - 1)}^2}(x + 2)\left[ {\sqrt {\left( {{b^2} + 4b + 3} \right){x^2} + 1}  + bx + 2} \right]}}\)

\( = \mathop {\lim }\limits_{x \to 1} \frac{{(4b + 3){x^2} - 4bx - 3}}{{{{(x - 1)}^2}(x + 2)\left[ {\sqrt {\left( {{b^2} + 4b + 3} \right){x^2} + 1}  + bx + 2} \right]}}\)

\( = \mathop {\lim }\limits_{x \to 1} \frac{{(4b + 3)x + 3}}{{(x - 1)(x + 2)\left[ {\sqrt {\left( {{b^2} + 4b + 3} \right){x^2} + 1}  + bx + 2} \right]}} = L,\,\,L \in \mathbb{R}\)

Khi đó: \((4b + 3) + 3 = 0 \Leftrightarrow b =  - \frac{3}{2} \Rightarrow a =  - \frac{3}{4}.\)

Vậy \({a^2} + {b^2} = \frac{{45}}{{16}}\)

Câu 3

Dung dịch nào có tính bazo nhất? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Biết hàm số \(f(x) = a{x^3} + b{x^2} + cx + d(a > 0)\) có đạo hàm là \(f'(x) > 0\) với \(\forall x \in \mathbb{R}\). Mệnh đề nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay