Câu hỏi:

22/10/2024 206

Cho phương trình  (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên của m để phương trình có đúng hai nghiệm phân biệt thuộc (−π; π).

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải

Bước 1: Đặt t = sin2x tìm điều kiện của t khi x ∈ (−π; π).

Bước 2:Đưa phương trình ban đầu về phương trình ẩn t và giải phương trình với điều kiện ở bước 1.

Bước 3: Nếu có nghiệm t không phụ thuộc vào m thì thay vào t = sin2x tìm nghiệm x ∈ (−π; π).

Bước 4: Biện luận m.

Một số phương trình lượng giác thường gặp

Lời giải

Bước 1:\((2m + 1){\cos ^2}2x - (3m - 1)\sin 2x - 3m + 1 = 0\)

Ta có \((2m + 1){\cos ^2}2x - (3m - 1)\sin 2x - 3m + 1 = 0\) (∗).

Đặt \(t = \sin 2x \Rightarrow  - 1 \le t \le 1\,\,(x \in ( - \pi ;\pi ))\)

Bước 2:

Khi đó phương trình (*) có dạng:

\(\begin{array}{l}(2m + 1)\left( {1 - {t^2}} \right) - (3m - 1)t - 3m + 1 = 0\\ \Leftrightarrow (2m + 1){t^2} + (3m - 1)t + m - 2 = 0\\ \Leftrightarrow (t + 1)((2m + 1)t + m - 2) = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t =  - 1}\\{(2m + 1)t + m - 2 = 0}\end{array}} \right.\end{array}\)

Bước 3:

Nếu: \(t =  - 1\,\,(tm) \Rightarrow \sin 2x =  - 1\)

\(\begin{array}{l} \Leftrightarrow 2x = \frac{{ - \pi }}{2} + k2\pi (k \in {\rm{Z}})\\ \Leftrightarrow x = \frac{{ - \pi }}{4} + k\pi  \in ( - \pi ;\pi )\\ \Rightarrow \frac{{ - 3}}{4} < k < \frac{5}{4} \Rightarrow k \in \{ 0;1\} \end{array}\)

Khi đó phương trình (*) có 2 nghiệm phân biệt là \(\frac{{ - \pi }}{4};\frac{{3\pi }}{4}\)

Bước 4:

\[\left( {2m + 1} \right)t = 2 - m\] (1).

+) Nếu \(m = \frac{{ - 1}}{2}{\rm{ }}\)

Từ (1)\( \Rightarrow m = 2\,\,({\rm{ktm}})\)

+) \(m \ne \frac{{ - 1}}{2} \Rightarrow t = \frac{{2 - m}}{{2m + 1}}\)

Để phương trình (*) có 2 nghiệm phân biệt thì

\(\left[ {\begin{array}{*{20}{l}}{t = \frac{{2 - m}}{{2m + 1}} =  - 1}\\{t <  - 1}\\{t > 1}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m =  - 3}\\{\frac{{m + 3}}{{2m + 1}} < 0 \Leftrightarrow  - 3 < m < \frac{{ - 1}}{2} \Leftrightarrow m \in \{  - 2; - 1\} }\\{\frac{{3m - 1}}{{2m + 1}} < 0 \Leftrightarrow \frac{{ - 1}}{2} < m < \frac{1}{3} \Leftrightarrow m = 0}\end{array}} \right.} \right.\)

Vậy có 4 giá trị của m thỏa mãn.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho biết \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {a{x^2} + 1}  - bx - 2}}{{{x^3} - 3x + 2}}(a,b \in \mathbb{R})\) có kết quả là một số thực. Giá trị của biểu thức \({a^2} + {b^2}\) bằng?

Xem đáp án » 22/10/2024 6,046

Câu 2:

Cho tập hợp A = {1;2;3;4;5}. Gọi S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A. Chọn ngẫu nhiên một số từ tập S, xác xuất để số được chọn có tổng các chữ số bằng  10 được viết dưới dạng phân số tối giản \(\frac{a}{b}\,\,(a,b \in \mathbb{Z}).\)

Tổng a + b bằng 

Xem đáp án » 22/10/2024 4,560

Câu 3:

Dung dịch nào có tính bazo nhất? 

Xem đáp án » 28/06/2024 2,264

Câu 4:

Biết hàm số \(f(x) = a{x^3} + b{x^2} + cx + d(a > 0)\) có đạo hàm là \(f'(x) > 0\) với \(\forall x \in \mathbb{R}\). Mệnh đề nào sau đây đúng?

Xem đáp án » 22/10/2024 1,936

Câu 5:

Cho tập hợp A = {1;2;3;4;5;6}.

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

 

ĐÚNG

SAI

Tập hợp A có 64 tập con khác rỗng.

¡

¡

Tập hợp A có 20 tập con có 3 phần tử.

¡

¡

Số tập con có 2 phần tử của A bằng số tập con có 4 phần tử của A.

¡

¡

Xem đáp án » 22/10/2024 1,360

Câu 6:

Phần tư duy đọc hiểu

Hoàn thành câu hỏi bằng cách chọn đáp án Đúng hoặc Sai.

Văn bản được mở đầu bằng cách kể lại một câu chuyện ngụ ngôn. 

Đúng hay sai?

Xem đáp án » 28/06/2024 1,252

Câu 7:

Cho dãy số un xác định bởi: \({u_1} = 1,\,\,{u_{n + 1}} = 2{u_n} + 3\,\,(n \ge 2)\) .

Các khẳng định sau là đúng hay sai?

 

ĐÚNG

SAI

un lập thành cấp số nhân.

¡

¡

Số hạng tổng quát của dãy là 2n+1 − 3

¡

¡

Xem đáp án » 22/10/2024 1,164
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua