Câu hỏi:

22/10/2024 192

Cho lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy ABCD là hình thoi,AB=a3,BAD^=120°. Góc giữa đường thẳng \({\rm{AC'}}\) và mặt phẳng \(\left( {{\rm{ADD'A'}}} \right)\) là 30°. M là trung điểm \({\rm{A'D'}},\) N là trung điểm \({\rm{BB'}}\). Tính khoảng cách từ \({\rm{N}}\) đến mặt phẳng (\({\rm{C'MA}}\))

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải

Sử dụng phương pháp đổi điểm để tính khoảng cách

Lời giải

Media VietJack

ΔA′D′C′ đều ⇒ C′M ⊥ A′D′

⇒ C′M ⊥ (AA′D′D)

\[ \Rightarrow \left( {\widehat {AC\prime ;\left( {ADD\prime A\prime } \right)}} \right) = \widehat {C\prime AM} = {30^ \circ }\]

Gọi O là trung điểm của AC′

      K là trung điểm của DD′

⇒ K và N đối xứng nhau qua O

⇒ d[N,(C′MA)] = d[K,(C′MA)]

Do (C′MA) ⊥ (AA′D′D) theo giao tuyến AM nên kẻ KH ⊥ AM,  ta có: KH ⊥ (C′MA)

⇒ d[K,(C′MA)] = KH

Ta có: \(C'M = a\sqrt 3 .\frac{{\sqrt 3 }}{2} = \frac{{3a}}{2}\)

Xét ΔAMC′: AM=C'M.cot30°=3a2.3=3a32

Xét ΔA′AM: \(A'A = \sqrt {A{M^2} - A'{M^2}}  = \sqrt {{{\left( {\frac{{3a\sqrt 3 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}  = a\sqrt 6 \)  

Ta có: SAA′D′D = AA′.A′D′ = \(a\sqrt 6 .a\sqrt 3  = 3{a^2}\sqrt 2 \)

\({S_{AA'M}} = \frac{1}{2}a\sqrt 6 .\frac{{a\sqrt 3 }}{2} = \frac{{3{a^2}\sqrt 2 }}{4}\)

\({S_{MD'K}} = \frac{1}{2}.\frac{{a\sqrt 3 }}{2}.\frac{{a\sqrt 6 }}{2} = \frac{{3{a^2}\sqrt 2 }}{8}\)

\({S_{ADK}} = \frac{1}{2}.\frac{{a\sqrt 6 }}{2}.a\sqrt 3  = \frac{{3{a^2}\sqrt 2 }}{4}\) 

\({S_{\Delta AMK}} = {S_{AA'D'D}} - \left( {{S_{\Delta A'AM}} + {S_{\Delta MD'K}} + {S_{\Delta ADK}}} \right)\)

\( = 3{a^2}\sqrt 2  - \left( {\frac{{3{a^2}\sqrt 2 }}{4} + \frac{{3{a^2}\sqrt 2 }}{8} + \frac{{3{a^2}\sqrt 2 }}{4}} \right) = \frac{{9{a^2}\sqrt 2 }}{8}\)

Mặt khác: \[{S_{\Delta AMK}} = \frac{1}{2}AM.KH\]

\( \Rightarrow \frac{{9{a^2}\sqrt 2 }}{8} = \frac{1}{2}.\frac{{3a\sqrt 3 }}{2}.KH\)

\( \Rightarrow KH = \frac{{a\sqrt 6 }}{2}\). Chọn C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho biết \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {a{x^2} + 1}  - bx - 2}}{{{x^3} - 3x + 2}}(a,b \in \mathbb{R})\) có kết quả là một số thực. Giá trị của biểu thức \({a^2} + {b^2}\) bằng?

Xem đáp án » 22/10/2024 6,046

Câu 2:

Cho tập hợp A = {1;2;3;4;5}. Gọi S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A. Chọn ngẫu nhiên một số từ tập S, xác xuất để số được chọn có tổng các chữ số bằng  10 được viết dưới dạng phân số tối giản \(\frac{a}{b}\,\,(a,b \in \mathbb{Z}).\)

Tổng a + b bằng 

Xem đáp án » 22/10/2024 4,559

Câu 3:

Dung dịch nào có tính bazo nhất? 

Xem đáp án » 28/06/2024 2,264

Câu 4:

Biết hàm số \(f(x) = a{x^3} + b{x^2} + cx + d(a > 0)\) có đạo hàm là \(f'(x) > 0\) với \(\forall x \in \mathbb{R}\). Mệnh đề nào sau đây đúng?

Xem đáp án » 22/10/2024 1,936

Câu 5:

Cho tập hợp A = {1;2;3;4;5;6}.

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

 

ĐÚNG

SAI

Tập hợp A có 64 tập con khác rỗng.

¡

¡

Tập hợp A có 20 tập con có 3 phần tử.

¡

¡

Số tập con có 2 phần tử của A bằng số tập con có 4 phần tử của A.

¡

¡

Xem đáp án » 22/10/2024 1,360

Câu 6:

Phần tư duy đọc hiểu

Hoàn thành câu hỏi bằng cách chọn đáp án Đúng hoặc Sai.

Văn bản được mở đầu bằng cách kể lại một câu chuyện ngụ ngôn. 

Đúng hay sai?

Xem đáp án » 28/06/2024 1,252

Câu 7:

Cho dãy số un xác định bởi: \({u_1} = 1,\,\,{u_{n + 1}} = 2{u_n} + 3\,\,(n \ge 2)\) .

Các khẳng định sau là đúng hay sai?

 

ĐÚNG

SAI

un lập thành cấp số nhân.

¡

¡

Số hạng tổng quát của dãy là 2n+1 − 3

¡

¡

Xem đáp án » 22/10/2024 1,164
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua