Câu hỏi:

23/10/2024 138

Hình dưới đây cho thấy một bể hình trụ có đường kính gấp 3 lần chiều cao của nó. Bể chứa khoảng 231,5 mét khối chất lỏng. Chiều cao của bể gần với số nào sau đây?
Hình dưới đây cho thấy một bể hình trụ có đường kính gấp 3 lần chiều cao của nó. Bể chứa khoảng 231,5 mét khối chất lỏng. Chiều cao của bể gần với số nào sau đây? 	A. 2 mét	B. 3 mét	C. 4 mét	D. 6 mét (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải

Sử dụng công thức tính thể tích V = π.r2.h rồi rút ra chiều cao h

Lời giải

Thể tích của bể là: \(V = \pi .{r^2}.h = \pi .{\left( {\frac{{3h}}{2}} \right)^2}.h = \frac{{9\pi }}{4}.{h^3} = 231,5\)

⇒ h ≈ 3,2m. Chọn B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Người ta cần trang trí một kim tự tháp hình chóp tứ giác đều S.ABCD cạnh bên bằng 200m, góc ASB = 15o bằng đường gấp khúc dây đèn led vòng quanh kim tự tháp AEFGHIJKLS. Trong đó điểm L cố định và LS = 40 m (tham khảo hình vẽ). Hỏi khi đó cần dung ít nhất bao nhiêu mét dây đèn led để trang trí?

Người ta cần trang trí một kim tự tháp hình chóp tứ giác đều S.ABCD cạnh bên bằng 200m, góc ASB = 15o bằng đường gấp khúc dây đèn led vòng quanh kim tự tháp AEFGHIJKLS. Trong đó điểm L cố định và LS = 40 m (tham khảo hình vẽ). Hỏi khi đó cần dung ít nhất bao nhiêu mét dây đèn led để trang trí? (ảnh 1)

Lời giải

Phương pháp giải

Lời giải

Ta sử dụng phương pháp trải đa diện:

Người ta cần trang trí một kim tự tháp hình chóp tứ giác đều S.ABCD cạnh bên bằng 200m, góc ASB = 15o bằng đường gấp khúc dây đèn led vòng quanh kim tự tháp AEFGHIJKLS. Trong đó điểm L cố định và LS = 40 m (tham khảo hình vẽ). Hỏi khi đó cần dung ít nhất bao nhiêu mét dây đèn led để trang trí? (ảnh 2)

Cắt hình chóp theo cạnh bên SA rồi trải ra mặt phẳng hai lần như hình vẽ trên. Từ đó suy ra chiều dài dây đèn led ngắn nhất là bằng AL + LS.

Từ giả thiết về hình chóp đều S.ABCD ta có \[\widehat {ASL} = {120^o}\].

Ta có \[A{L^2} = S{A^2} + S{L^2} - 2SA.SL.\cos \widehat {ASL}\] \( = {200^2} + {40^2} - 2.200.40.\cos {120^^\circ } = 49600.\)

Nên \(AL = \sqrt {49600}  = 40\sqrt {31} .\)

Vậy, chiều dài dây đèn led cần ít nhất là \(40\sqrt {31}  + 40\) mét.

 Chọn C

Lời giải

Phương pháp giải

Lời giải

Theo bài cho, tổng số viên bi có trong hộp là: n + 8 (n ∈ N*).

Lấy ngẫu nhiên 3 viên bi từ hộp. Số kết quả có thể xảy ra là: \(n(\Omega ) = C_{n + 8}^3\).

Gọi \(A\) là biến cố: "3 viên bi lấy được có đủ ba màu". Số kết quả thuận lợi cho \(A\) là:

\(n(A) = C_5^1.C_3^1.C_n^1 = 15n{\rm{. }}\)

\( \Rightarrow \) Xác suất để trong 3 viên bi lấy được có đủ ba màu là:

\(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{15n}}{{C_{n + 8}^3}} = \frac{{90n}}{{(n + 6)(n + 7)(n + 8)}}\)

Theo bài, ta có: \(P(A) = \frac{{45}}{{182}}\) nên ta được phương trình:

\(\frac{{90n}}{{(n + 6)(n + 7)(n + 8)}} = \frac{{45}}{{182}} \Leftrightarrow 364n = (n + 6)(n + 7)(n + 8)\)

\( \Leftrightarrow {n^3} + 21{n^2} - 218n + 336 = 0.\)

Giải phương trình trên với điều kiện \(n\) là số nguyên dương, ta được \(n = 6\).

Do đó, trong hộp có tất cả 14 viên bi và \(n(\Omega ) = C_{14}^3\).

Gọi \(B\) là biến cố: "3 viên bi lấy được có nhiều nhất hai viên bi đỏ". Suy ra, \(\bar B\) là biến cố: "3 viên bi lấy được đều là bi đỏ". Số kết quả thuận lợi cho \(\bar B\) là: \(n(\bar B) = C_5^3\).

Khi đó, xác suất \(P\) để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ là:

\(P = P(B) = 1 - P(\bar B) = 1 - \frac{{n(\bar B)}}{{n(\Omega )}} = 1 - \frac{{C_5^3}}{{C_{14}^3}} = \frac{{177}}{{182}}\).

 Chọn B

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay