Câu hỏi:
23/10/2024 363Cho hình chóp S.ABCD có đáy ABCD là một hình vuông, SA ⊥ (ABCD). Kẻ AH vuông góc với SC (H thuộc SC), BM vuông góc với SC (M thuộc SC).
Kéo thả các đáp án vào ô trống thích hợp: vuông goc, song song, nằm trênKhi đó SC _______ với (MBD).
AH ________ với (MBD).
Quảng cáo
Trả lời:
Đáp án
Khi đó SC vuông góc với (MBD).
AH song song với (MBD).
Phương pháp giải
Đặt O là trung điểm của AB, E là trung điểm của CD, N là trung điểm của BC.
Kẻ BD. Ta có MBD là tam giác vuông tại M.
Lời giải
Đặt \(O\) là trung điểm của \({\rm{AB}}\), E là trung điểm của \({\rm{CD}},{\rm{N}}\) là trung điểm của \({\rm{BC}}\).
Ta có \(OM//ND\) vì \(OM//AB\) và \(ND//AB\). Do đó, .
Ta có \(SA//BC\) vì \({\rm{ABCD}}\) là hình vuông nên \(AH = \frac{1}{{\sqrt 2 }}SC,BM = \frac{1}{2}SC\), và \(MN = \frac{1}{2}BC = \frac{1}{2}SA\).
Kẻ BD. Ta có MBD là tam giác vuông tại \(M\).
Vì \(AH = \frac{1}{{\sqrt 2 }}SC\) và \(\frac{{OM}}{{MB}} = \frac{1}{2}\) nên \(\Delta OMB\) và \(\Delta AHS,\,\,\Delta OMB\) và \(\Delta AHS\) đồng dạng.
Vậy \(\widehat {AHS} = \widehat {OMB}\).
Tương tự, \(\Delta NDB\) và \(\Delta ASC\) đồng dạng nên \(\widehat {SCN} = \widehat {NDB}\).
Suy ra, \(\widehat {MBD} = \widehat {AHS} = \widehat {OMB}\) và \(SC \bot BD\). Do đó, \(SC \bot (MBD)\) và \(AH//(MBD)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải
Lời giải
Ta sử dụng phương pháp trải đa diện:
Cắt hình chóp theo cạnh bên SA rồi trải ra mặt phẳng hai lần như hình vẽ trên. Từ đó suy ra chiều dài dây đèn led ngắn nhất là bằng AL + LS.
Từ giả thiết về hình chóp đều S.ABCD ta có \[\widehat {ASL} = {120^o}\].
Ta có \[A{L^2} = S{A^2} + S{L^2} - 2SA.SL.\cos \widehat {ASL}\] \( = {200^2} + {40^2} - 2.200.40.\cos {120^^\circ } = 49600.\)
Nên \(AL = \sqrt {49600} = 40\sqrt {31} .\)
Vậy, chiều dài dây đèn led cần ít nhất là \(40\sqrt {31} + 40\) mét.
Chọn C
Lời giải
b) Xác suất để chọn được một nam sinh giỏi toán hay một nữ sinh giỏi lý là 23/40
Phương pháp giải
Lời giải
Ta có A∪B là biến cố chọn một nam sinh giỏi toán hay một nữ sinh giỏi lý.
Ta có \(P(A) = \frac{{15}}{{40}} = \frac{3}{8}{\rm{ v\`a }}P(B) = \frac{8}{{40}} = \frac{1}{5}\) A và B là hai biến cố xung khắc nên
\(P(A \cup B) = P(A) + P(B) = \frac{3}{8} + \frac{1}{5} = \frac{{23}}{{40}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận