Câu hỏi:

23/10/2024 91

Trong không gian, cho bốn mặt cầu có bán kính lần lượt là 2,3,3,2 tiếp xúc ngoài với nhau. Mặt cầu nhỏ nhất tiếp xúc ngoài với cả bốn mặt cầu nói trên có bán kính bằng

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi A, B là tâm mặt cầu bán kính bằng 2 ; C, D là tâm mặt cầu bán kính bằng 3 ; I là tâm mặt cầu nhỏ nhất có bán kính \(x\) tiếp xúc ngoài với cả bốn mặt cầu trên.

Mặt cầu \((I)\) tiếp xúc ngoài với 4 mặt cầu tâm A, B, C, D nên \(IA = IB = x + 2,IC = ID = x + 3\).

Gọi \((P),(Q)\) lần lượt là các mặt phẳng trung trực đoạn AB và CD.

\(\left\{ {\begin{array}{*{20}{l}}{IA = IB \Rightarrow I \in (P)}\\{IC = ID \Rightarrow I \in (Q)}\end{array} \Rightarrow I \in (P) \cap (Q)\,\,(1).} \right.\)

Gọi M, N lần lượt là trung điểm cạnh AB, CD.

Tứ diện ABCD có \(DA = DB = CA = CB = 5\) suy ra MN là đường vuông góc chung của AB và CD, suy ra \(MN = (P) \cap (Q)\,\,(2)\).

Từ (1) và (2) suy ra \(I \in MN\)

Tam giác IAM có \(IM = \sqrt {I{A^2} - A{M^2}}  = \sqrt {{{(x + 2)}^2} - 4} \).

Tam giác CIN có \(IN = \sqrt {I{C^2} - C{N^2}}  = \sqrt {{{(x + 3)}^2} - 9} \).

Tam giác AMN có \(NM = \sqrt {N{A^2} - A{M^2}}  = \sqrt {12} \).

Suy ra \(\sqrt {{{(x + 3)}^2} - 9}  + \sqrt {{{(x + 2)}^2} - 4}  = \sqrt {12}  \Rightarrow x = \frac{6}{{11}}\). 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một vật đang chuyển động đều với vận tốc v0(m/s)  thì bắt đầu tăng tốc với phương trình gia tốc \(a(t) = {v_0}t + {t^2}\left( {{\rm{m}}/{{\rm{s}}^2}} \right)\) trong đó t là khoảng thời gian được tính bằng giây kể từ thời điểm vật bắt đầu tăng tốc. Biết quãng đường vật đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng tốc là 100 m. Khi đó, vận tốc ban đầu v0 của vật bằng bao nhiêu (làm tròn đến chữ số thập phân thứ 3)?

Xem đáp án » 23/10/2024 3,472

Câu 2:

Cho \(\log _2^2(xy) = {\log _2}\left( {\frac{x}{4}} \right){\log _2}(4y)\). Biểu thức \(P = {\log _3}(x + 4y + 4) + {\log _2}(x - 4y - 1)\) có giá trị bằng

Xem đáp án » 23/10/2024 1,810

Câu 3:

Phân loại lớn nhất trong hệ thống phân loại sinh vật đề cập ở trên là 

Xem đáp án » 29/06/2024 1,701

Câu 4:

Theo thống kê tại một nhà máy Z, nếu áp dụng tuần làm việc 40 giờ thì mỗi tuần có 100 công nhân đi làm và mỗi công nhân làm được 120 sản phẩm trong một giờ. Nếu tăng thời gian làm việc thêm 2 giờ mỗi tuần thì sẽ có 1 công nhân nghỉ việc và năng suất lao động giảm 5 sản phẩm/1 công nhân/1 giờ. Ngoài ra, số phế phẩm mỗi tuần ước tính là \(P(x) = \frac{{95{x^2} + 120x}}{4}\), với x là thời gian làm việc trong một tuần. Nhà máy cần áp dụng thời gian làm việc mỗi tuần (1) _______  giờ để số lượng sản phẩm thu được mỗi tuần là lớn nhất.

Xem đáp án » 23/10/2024 1,255

Câu 5:

Để in một quyển tạp chí, người ta cần sử dụng 1 tờ giấy bìa cứng và 25 tờ giấy in cùng với mực in. Một tập giấy in gồm 500 tờ và một tập giấy bìa cứng gồm 60 tờ, có giá gấp đôi giá của một tập giấy in. Mỗi hộp mực in được 130 tờ giấy in hoặc giấy bìa cứng. Một tập giấy in có giá 50 nghìn đồng. Hộp mực có giá 900 nghìn đồng mỗi hộp.

Với ngân sách là 60 triệu đồng, có tối đa (1) ______ tạp chí hoàn chỉnh có thể được in.

Xem đáp án » 23/10/2024 1,161

Câu 6:

Cho hàm số \(y = f(x)\) xác định và có đạo hàm trên \(\mathbb{R}\), biết \(f(4) = 5\) và \({f^\prime }(4) = 2\). Giới hạn \(\mathop {\lim }\limits_{x \to 4} \frac{{{f^2}(x) + f(x) - 30}}{{\sqrt x  - 2}}\) bằng (1) _________.

Xem đáp án » 23/10/2024 1,150

Câu 7:

Hai chất điểm \(M\) và \(N\) chuyển động thẳng đều trên trục Ox và Oy vuông góc với nhau (như hình vẽ):

Media VietJack

Tại thời điểm t = 0 chất điểm \(M\) đang cách gốc tọa độ \(O\) một đoạn 10 mét; chất điểm \(N\) cách gốc tọa độ \(O\) một đoạn \(12\;{\rm{m}}\). Hai chất điểm cùng chuyển động hướng về \(O\) với các tốc độ tương ứng là 0,4 m/s và 0,3 m/s. Khoảng cách nhỏ nhất giữa 2 chất điểm bằng bao nhiêu?

Xem đáp án » 23/10/2024 1,127