Câu hỏi:
23/10/2024 912
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 8 , mặt bên SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách từ \(B\) đến mặt phẳng \((SAC)\) là \(\frac{{a\sqrt b }}{c}\) (phân số tối giản với \(c > 0)\). Tính \(a + {b^2} - {c^3}\).
Quảng cáo
Trả lời:

Kẻ \(SH \bot AB \Rightarrow H\) là trung điểm của AB.
Do \((SAB) \bot (ABCD)\) và \((SAB) \cap (ABCD) = AB\) nên từ \(SH \bot AB\) ta được \(SH \bot (ABCD)\).
Mặt khác ta có \(B\dot A \cap (SAC) = \{ A\} \) và \(H\) là trung điểm của AB nên ta có \(d(B,(SAC)) = 2d(H,(SAC))\).
Trong \((ABCD)\) kẻ \(HK \bot AC\,\,(K \in AC)\) và trong \((SHK)\) kẻ \(HE \bot SK(E \in SK)\).
Ta có: \(SH \bot (ABCD) \Rightarrow SH \bot AC\). Kết hợp với \(HK \bot AC\) ta được \(AC \bot (SHK) \Rightarrow AC \bot HE\).
Hơn nữa \(HE \bot SK\) nên \(HE \bot (SAC)\).
Vậy \(d(H,(SAC)) = HE \Rightarrow d(B,(SAC)) = 2HE\).
Trong \((ABCD)\) ta có .
Mặt khác do \(\Delta SAB\) đều nên \(SH = \frac{{8\sqrt 3 }}{2} = 4\sqrt 3 \). Áp dụng hệ thức lượng trong \(\Delta SHK\) ta có
\(\frac{1}{{H{E^2}}} = \frac{1}{{H{K^2}}} + \frac{1}{{S{H^2}}} \Rightarrow HE = \frac{{4\sqrt {21} }}{7} \Rightarrow d(B,(SAC)) = \frac{{8\sqrt {21} }}{7}\). Suy ra \(a = 8,b = 21,c = 7\).
Vậy \(a + {b^2} - {c^3} = 106\).
Chọn C
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Trong không gian Oxyz, cho 2 vectơ \(\vec a,\vec b\) tạo với nhau góc \({120^o}\) và \(|\vec a| = 3;|\vec b| = 5\). Giá trị của \(T = |\vec a - \vec b|\) bằng (1) __ 7 __ .
Giải thích
Ta có \({T^2} = |\vec a - \vec b{|^2} = {\vec a^2} + {\overrightarrow b ^2} - 2\vec a.\vec b \Leftrightarrow {T^2} = {\vec a^2} + {\overrightarrow b ^2} - 2.|\vec a|.|\vec b|.\cos (\vec a,\vec b)\)
\( \Leftrightarrow {T^2} = {3^2} + {5^2} - 2.3.5.\cos {120^^\circ } \Leftrightarrow {T^2} = 49 \Rightarrow T = 7.\)
Lời giải
Giải thích
Theo phần dẫn ta có, để đặc trưng cho mức độ làm việc của động cơ nhiệt là hiệu suất nhiệt: \(e = \frac{{\left| A \right|}}{{\left| {{Q_1}} \right|}}\)
→ Khi Q1 không đổi, để e càng lớn thì A càng lớn, hay nói cách khác Mục đích của một động cơ nhiệt là càng nhiều nhiệt lượng nhận từ nguồn nhiệt Q1 chuyển thành công càng tốt.
Chọn A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.