Câu hỏi:
23/10/2024 204
Cho phương trình \(3{\cos ^2}x + 2|\sin x| = m\) (∗) với m là tham số.
Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu
Đúng
Sai
Với m = 1, phương trình (∗) có 4 điểm biểu diễn nghiệm trên đường tròn lượng giác.
Có 2 giá trị nguyên của tham số m để phương trình (∗) có nghiệm.
Có một giá trị của tham số m để phương trình (∗) có nghiệm duy nhất thuộc đoạn \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\).
Cho phương trình \(3{\cos ^2}x + 2|\sin x| = m\) (∗) với m là tham số.
Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu |
Đúng |
Sai |
Với m = 1, phương trình (∗) có 4 điểm biểu diễn nghiệm trên đường tròn lượng giác. |
||
Có 2 giá trị nguyên của tham số m để phương trình (∗) có nghiệm. |
||
Có một giá trị của tham số m để phương trình (∗) có nghiệm duy nhất thuộc đoạn \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\). |
Quảng cáo
Trả lời:
Đáp án
Phát biểu |
Đúng |
Sai |
Với m = 1, phương trình (∗) có 4 điểm biểu diễn nghiệm trên đường tròn lượng giác. |
X | |
Có 2 giá trị nguyên của tham số m để phương trình (∗) có nghiệm. |
X | |
Có một giá trị của tham số m để phương trình (∗) có nghiệm duy nhất thuộc đoạn \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\). |
X |
Giải thích
Ta có:
\(3{\cos ^2}x + 2|\sin x| = m\)
\( \Leftrightarrow 3\left( {1 - {{\sin }^2}x} \right) + 2|\sin x| = m\)
\( \Leftrightarrow 3{\sin ^2}x - 2|\sin x| + m - 3 = 0\) (∗∗)
+, Với m = 1, phương trình trở thành: \[3{\sin ^2}x - 2\left| {\sin x} \right| - 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\left| {\sin x} \right| = \frac{{1 - \sqrt 7 }}{3}}\\{\left| {\sin x} \right| = \frac{{1 + \sqrt 7 }}{3}}\end{array}} \right.\,\,\left( L \right)\]
Vậy với m = 1, phương trình (∗) vô nghiệm.
+, Đặt \(t = |\sin x|\,\,(t \ge 0)\). Phương trình (∗∗) trở thành: \(m = - 3{t^2} + 2t + 3\).
Phương trình (∗) có nghiệm ⇔(∗∗) có ít nhất một nghiệm thỏa mãn \(0 \le \sin x \le 1\).
⇔ Đường thẳng y = m cắt đồ thị hàm số \(f(t) = - 3{t^2} + 2t + 3\) tại ít nhất một điểm có hoành độ thỏa mãn \[0 \le {t_0} \le 1\].
Bảng biến thiên của hàm số \(f(t) = - 3{t^2} + 2t + 3\) trên [0;1]:
![Cho phương trình \(3{\cos ^2}x + 2|\sin x| = m\) (∗) với m là tham số. Mỗi phát biểu sau đây là đúng hay sai? Phát biểu Đúng Sai Với m = 1, phương trình (∗) có 4 điểm biểu diễn nghiệm trên đường tròn lượng giác. Có 2 giá trị nguyên của tham số m để phương trình (∗) có nghiệm. Có một giá trị của tham số m để phương trình (∗) có nghiệm duy nhất thuộc đoạn \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid10-1729672133.png)
Vậy phương trình đã cho có nghiệm \( \Leftrightarrow 2 \le m \le \frac{{10}}{3}\) hay có 2 giá trị nguyên của tham số \(m\) để phương trình \((*)\) có nghiệm.
+ , Trên \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\), nếu \(x\) là nghiệm của phương trình \((*)\) thì \( - x\) cũng là nghiệm của \((*)\).
Để phương trình \((*)\) có nghiệm duy nhất trên \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\) thì \(x = 0\).
Với \(x = 0\) ta có: \((**) \Leftrightarrow m - 3 = 0 \Leftrightarrow m = 3\)
Thử lại, với \(m = 3\), phương trình \((**)\) trở thành \(3{\sin ^2}x - 2\left| {\sin x} \right| = 0 \Leftrightarrow \)\(\begin{array}{l}\sin x = 0\\\sin x = \pm \frac{2}{3}\end{array}\)
Biểu diễn trên đường tròn lượng giác ta thấy trên \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\), phương trình \((*)\) có nhiều hơn một nghiệm.
![Cho phương trình \(3{\cos ^2}x + 2|\sin x| = m\) (∗) với m là tham số. Mỗi phát biểu sau đây là đúng hay sai? Phát biểu Đúng Sai Với m = 1, phương trình (∗) có 4 điểm biểu diễn nghiệm trên đường tròn lượng giác. Có 2 giá trị nguyên của tham số m để phương trình (∗) có nghiệm. Có một giá trị của tham số m để phương trình (∗) có nghiệm duy nhất thuộc đoạn \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\). (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid11-1729672139.png)
Vậy không tồn tại giá trị của tham số m để phương trình (*) có nghiệm duy nhất trên \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Trong không gian Oxyz, cho 2 vectơ \(\vec a,\vec b\) tạo với nhau góc \({120^o}\) và \(|\vec a| = 3;|\vec b| = 5\). Giá trị của \(T = |\vec a - \vec b|\) bằng (1) __ 7 __ .
Giải thích
Ta có \({T^2} = |\vec a - \vec b{|^2} = {\vec a^2} + {\overrightarrow b ^2} - 2\vec a.\vec b \Leftrightarrow {T^2} = {\vec a^2} + {\overrightarrow b ^2} - 2.|\vec a|.|\vec b|.\cos (\vec a,\vec b)\)
\( \Leftrightarrow {T^2} = {3^2} + {5^2} - 2.3.5.\cos {120^^\circ } \Leftrightarrow {T^2} = 49 \Rightarrow T = 7.\)
Lời giải
Giải thích
Theo phần dẫn ta có, để đặc trưng cho mức độ làm việc của động cơ nhiệt là hiệu suất nhiệt: \(e = \frac{{\left| A \right|}}{{\left| {{Q_1}} \right|}}\)
→ Khi Q1 không đổi, để e càng lớn thì A càng lớn, hay nói cách khác Mục đích của một động cơ nhiệt là càng nhiều nhiệt lượng nhận từ nguồn nhiệt Q1 chuyển thành công càng tốt.
Chọn A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.