Câu hỏi:

23/10/2024 89

Cho số phức \(z\) thỏa mãn \(|z - 1 - 2i| \le 1\) và \(|z - 1 + 2i| \ge |z + 3 - 2i|\). Diện tích phần mặt phẳng chứa các điểm biểu diễn của số phức \(z\) bằng (1) _______. (Lấy \(\pi  \approx 3,14\) và kết quả viết dưới dạng phân số tối giản).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

Cho số phức \(z\) thỏa mãn \(|z - 1 - 2i| \le 1\) và \(|z - 1 + 2i| \ge |z + 3 - 2i|\). Diện tích phần mặt phẳng chứa các điểm biểu diễn của số phức \(z\) bằng (1) __ 157/100 __ . (Lấy \(\pi  \approx 3,14\) và kết quả viết dưới dạng phân số tối giản).

Giải thích

Giả sử \(z = x + yi\quad (x,y \in \mathbb{R}){\rm{.}}\)

Khi đó \(|z - 1 - 2i| \le 1 \Leftrightarrow |(x - 1) + (y - 2)i| \le 1\)

\( \Leftrightarrow \sqrt {{{(x - 1)}^2} + {{(y - 2)}^2}}  \le 1 \Leftrightarrow {(x - 1)^2} + {(y - 2)^2} \le 1\).

Và \(|z - 1 + 2i| \ge |z + 3 - 2i|\)

\( \Leftrightarrow \sqrt {{{(x - 1)}^2} + {{(y + 2)}^2}}  \ge \sqrt {{{(x + 3)}^2} + {{(y - 2)}^2}} \)

\( \Leftrightarrow {(x - 1)^2} + {(y + 2)^2} \ge {(x + 3)^2} + {(y - 2)^2} \Leftrightarrow y \ge x + 1.\)

Cho số phức \(z\) thỏa mãn \(|z - 1 - 2i| \le 1\) và \(|z - 1 + 2i| \ge |z + 3 - 2i|\). Diện tích phần mặt phẳng chứa các điểm biểu diễn của số phức \(z\) bằng (1) _______. (Lấy \(\pi  \approx 3,14\) và kết quả viết dưới dạng phân số tối giản). (ảnh 1)

Gọi (T) là nửa mặt phẳng có bờ là đường thẳng \(d:y = x + 1\), không chứa gốc tọa độ O(0;0). Khi đó tập hợp các điểm biểu diễn số phức z thỏa mãn đề là nửa hình tròn (C) tâm I(1;2), bán kính R = 1 và thuộc (T) (phần tô màu trên hình vẽ).

Vì đường thẳng d đi qua tâm I(1;2) của hình tròn (C) nên diện tích cần tìm là một nửa diện tích hình tròn (C). Do đó \[S = \frac{\pi }{2} \approx \frac{{157}}{{100}}\].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, cho 2 vectơ \(\vec a,\vec b\) tạo với nhau góc \({120^o }\) và \(|\vec a| = 3;|\vec b| = 5\). Giá trị của \(T = |\vec a - \vec b|\) bằng (1) _______.

Xem đáp án » 23/10/2024 2,571

Câu 2:

Khẳng định nào sau đây là đúng? Một động cơ nhiệt hoạt động tốt có nghĩa là 

Xem đáp án » 30/06/2024 1,467

Câu 3:

Cho ba số \(a = {1000^{1001}},b = {2^{{2^{64}}}}\) và \(c = {1^1} + {2^2} + {3^3} + \ldots + {1000^{1000}}\). 

Xem đáp án » 23/10/2024 1,385

Câu 4:

Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'(x) = {x^2}(x + 2)(x - 3)\).

Mỗi phát biểu sau đây là đúng hay sai?

Phát biểu

Đúng

Sai

Hàm số \(f(x)\) có 3 điểm cực trị.

   

Hàm số \(f(x)\) nghịch biến trên (-2;3).

   

Hàm số \(f(x)\) có điểm cực đại là x = 2.

   

Xem đáp án » 23/10/2024 1,210

Câu 5:

Phát biểu sau đúng hay sai?

Hợp chất hữu cơ X có phần trăm khối lượng của các nguyên tố như sau: %C = 45,80%; %H = 10,57%; %N = 13,24%, còn lại là O. Biết MC =12,01 g/mol, MH = 1,008 g/mol và MO = 16,00 g/mol. Công thức kinh nghiệm của X là C4H10NO2.

Xem đáp án » 30/06/2024 1,018

Câu 6:

Cho \(\log _2^2(xy) = {\log _2}\left( {\frac{x}{4}} \right){\log _2}(4y)\). Biểu thức \(P = {\log _3}(x + 4y + 4) + {\log _2}(x - 4y - 1)\) có giá trị bằng bao nhiêu? 

Xem đáp án » 23/10/2024 923

Câu 7:

Phát biểu sau đúng hay sai?

Phương trình phản ứng xảy ra trong thí nghiệm 2 là: 2H2+O2→2H2O.

Xem đáp án » 30/06/2024 910
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua