Câu hỏi:
23/10/2024 109
Cho số phức \(z\) thỏa mãn \(|z - 1 - 2i| \le 1\) và \(|z - 1 + 2i| \ge |z + 3 - 2i|\). Diện tích phần mặt phẳng chứa các điểm biểu diễn của số phức \(z\) bằng (1) _______. (Lấy \(\pi \approx 3,14\) và kết quả viết dưới dạng phân số tối giản).
Cho số phức \(z\) thỏa mãn \(|z - 1 - 2i| \le 1\) và \(|z - 1 + 2i| \ge |z + 3 - 2i|\). Diện tích phần mặt phẳng chứa các điểm biểu diễn của số phức \(z\) bằng (1) _______. (Lấy \(\pi \approx 3,14\) và kết quả viết dưới dạng phân số tối giản).
Quảng cáo
Trả lời:
Đáp án
Cho số phức \(z\) thỏa mãn \(|z - 1 - 2i| \le 1\) và \(|z - 1 + 2i| \ge |z + 3 - 2i|\). Diện tích phần mặt phẳng chứa các điểm biểu diễn của số phức \(z\) bằng (1) __ 157/100 __ . (Lấy \(\pi \approx 3,14\) và kết quả viết dưới dạng phân số tối giản).
Giải thích
Giả sử \(z = x + yi\quad (x,y \in \mathbb{R}){\rm{.}}\)
Khi đó \(|z - 1 - 2i| \le 1 \Leftrightarrow |(x - 1) + (y - 2)i| \le 1\)
\( \Leftrightarrow \sqrt {{{(x - 1)}^2} + {{(y - 2)}^2}} \le 1 \Leftrightarrow {(x - 1)^2} + {(y - 2)^2} \le 1\).
Và \(|z - 1 + 2i| \ge |z + 3 - 2i|\)
\( \Leftrightarrow \sqrt {{{(x - 1)}^2} + {{(y + 2)}^2}} \ge \sqrt {{{(x + 3)}^2} + {{(y - 2)}^2}} \)
\( \Leftrightarrow {(x - 1)^2} + {(y + 2)^2} \ge {(x + 3)^2} + {(y - 2)^2} \Leftrightarrow y \ge x + 1.\)

Gọi (T) là nửa mặt phẳng có bờ là đường thẳng \(d:y = x + 1\), không chứa gốc tọa độ O(0;0). Khi đó tập hợp các điểm biểu diễn số phức z thỏa mãn đề là nửa hình tròn (C) tâm I(1;2), bán kính R = 1 và thuộc (T) (phần tô màu trên hình vẽ).
Vì đường thẳng d đi qua tâm I(1;2) của hình tròn (C) nên diện tích cần tìm là một nửa diện tích hình tròn (C). Do đó \[S = \frac{\pi }{2} \approx \frac{{157}}{{100}}\].
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Trong không gian Oxyz, cho 2 vectơ \(\vec a,\vec b\) tạo với nhau góc \({120^o}\) và \(|\vec a| = 3;|\vec b| = 5\). Giá trị của \(T = |\vec a - \vec b|\) bằng (1) __ 7 __ .
Giải thích
Ta có \({T^2} = |\vec a - \vec b{|^2} = {\vec a^2} + {\overrightarrow b ^2} - 2\vec a.\vec b \Leftrightarrow {T^2} = {\vec a^2} + {\overrightarrow b ^2} - 2.|\vec a|.|\vec b|.\cos (\vec a,\vec b)\)
\( \Leftrightarrow {T^2} = {3^2} + {5^2} - 2.3.5.\cos {120^^\circ } \Leftrightarrow {T^2} = 49 \Rightarrow T = 7.\)
Lời giải
Giải thích
Theo phần dẫn ta có, để đặc trưng cho mức độ làm việc của động cơ nhiệt là hiệu suất nhiệt: \(e = \frac{{\left| A \right|}}{{\left| {{Q_1}} \right|}}\)
→ Khi Q1 không đổi, để e càng lớn thì A càng lớn, hay nói cách khác Mục đích của một động cơ nhiệt là càng nhiều nhiệt lượng nhận từ nguồn nhiệt Q1 chuyển thành công càng tốt.
Chọn A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.