Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = 3\sin x + 4\cos x + 1\) bằng (1) ______.
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = 3\sin x + 4\cos x + 1\) bằng (1) ______.
Quảng cáo
Trả lời:
Đáp án
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = 3\sin x + 4\cos x + 1\) bằng (1) __ 2 __ .
Giải thích
Ta có \(\frac{y}{5} = \frac{3}{5}\sin x + \frac{4}{5}\cos x + \frac{1}{5} = \sin (x + \alpha ) + \frac{1}{5}\) với \(\cos \alpha = \frac{3}{5}\) và \(\sin \alpha = \frac{4}{5}\).
Mà \( - 1 \le \sin (x + \alpha ) \le 1 \Leftrightarrow \frac{{ - 4}}{5} \le \sin (x + \alpha ) + \frac{1}{5} \le \frac{6}{5}\) hay \(\frac{{ - 4}}{5} \le \frac{y}{5} \le \frac{6}{5}\) suy ra \( - 4 \le y \le 6\).
Vậy \[\min y = - 4;\;\max y = 6\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Trong không gian Oxyz, cho 2 vectơ \(\vec a,\vec b\) tạo với nhau góc \({120^o}\) và \(|\vec a| = 3;|\vec b| = 5\). Giá trị của \(T = |\vec a - \vec b|\) bằng (1) __ 7 __ .
Giải thích
Ta có \({T^2} = |\vec a - \vec b{|^2} = {\vec a^2} + {\overrightarrow b ^2} - 2\vec a.\vec b \Leftrightarrow {T^2} = {\vec a^2} + {\overrightarrow b ^2} - 2.|\vec a|.|\vec b|.\cos (\vec a,\vec b)\)
\( \Leftrightarrow {T^2} = {3^2} + {5^2} - 2.3.5.\cos {120^^\circ } \Leftrightarrow {T^2} = 49 \Rightarrow T = 7.\)
Lời giải
Đáp án
|
Phát biểu |
Đúng |
Sai |
|
Nhiệt độ của chênh lệch giữa cốc nước và nhiệt độ ngăn mát tủ lạnh sau khoảng thời gian t là hàm số có dạng \(y(t) = y(0){e^{kt}}\). |
X | |
|
Kết quả làm tròn đến chữ số thập phân thứ tư của k là −0,0145. |
X | |
|
Sau 60 phút trong tủ lạnh, nhiệt độ của cốc nước khoảng 10∘C (Kết quả làm tròn đến chữ số hàng đơn vị). |
X |
Giải thích
|
Lí do lựa chọn phương án |
1) |
Đúng vì: Do \(\frac{{y'(t)}}{{y(t)}} = k\) với k là hằng số. Lấy tích phân với cận từ 0 đến t hai vế. Ta được \(\int_0^t {\frac{{y'(t)}}{{y(t)}}} dt = \int_0^t k dt\) Kéo theo \(\ln \frac{{y(t)}}{{y(0)}} = kt\), hay \(y(t) = y(0).{e^{kt}}\). |
|
2) |
Đúng vì: Tính được \[y(0) = T(0) - {T_s} = 22 - 5 = 17\]. Ta có \(T(t) = {T_s} + y(t) = 5 + 17{e^{kt}}\). Thay t = 30 ta được \(T(30) = 5 + 17{e^{30k}}\). Mà \(T(30) = 16\) nên \(k = \ln \left( {\frac{{11}}{{17}}} \right):30 \approx - 0,0145\). |
|
|
3) |
Sai vì: Tính \(T(60) \approx 12\) (Kết quả làm tròn đến chữ số hàng đơn vị). |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.