Cho số phức \(z\) thoả mãn \(|z - 3 - 4i| = \sqrt 5 \). Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = |z + 2{|^2} - |z - i{|^2}\). Tổng \(M + m\) bằng (1) _______.
Cho số phức \(z\) thoả mãn \(|z - 3 - 4i| = \sqrt 5 \). Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = |z + 2{|^2} - |z - i{|^2}\). Tổng \(M + m\) bằng (1) _______.
Quảng cáo
Trả lời:
Đáp án
Cho số phức \(z\) thoả mãn \(|z - 3 - 4i| = \sqrt 5 \). Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = |z + 2{|^2} - |z - i{|^2}\). Tổng \(M + m\) bằng (1) __ 46 __.
Giải thích
Đặt \(z = a + bi\,\,(a,b \in \mathbb{R})\).
Ta có: \(|z - 3 - 4i| = \sqrt 5 \Leftrightarrow {(a - 3)^2} + {(b - 4)^2} = 5\) (1).
Mặt khác, \(P = |z + 2{|^2} - |z - i{|^2} = {(a + 2)^2} + {b^2} - \left[ {{a^2} + {{(b - 1)}^2}} \right] = 4a + 2b + 3 \Rightarrow b = \frac{{P - 4a - 3}}{2}\) (2)
Từ (1) và (2) ta có \(20{a^2} + (64 - 8P)a + {P^2} - 22P + 137 = 0\,\,(*){\rm{.}}\)
Phương trình \((*)\) có nghiệm khi \({\Delta ^\prime } = - 4{P^2} + 184P - 1716 \ge 0\).
\( \Leftrightarrow 13 \le P \le 33 \Rightarrow M + m = 33 + 13 = 46.\
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Trong không gian Oxyz, cho 2 vectơ \(\vec a,\vec b\) tạo với nhau góc \({120^o}\) và \(|\vec a| = 3;|\vec b| = 5\). Giá trị của \(T = |\vec a - \vec b|\) bằng (1) __ 7 __ .
Giải thích
Ta có \({T^2} = |\vec a - \vec b{|^2} = {\vec a^2} + {\overrightarrow b ^2} - 2\vec a.\vec b \Leftrightarrow {T^2} = {\vec a^2} + {\overrightarrow b ^2} - 2.|\vec a|.|\vec b|.\cos (\vec a,\vec b)\)
\( \Leftrightarrow {T^2} = {3^2} + {5^2} - 2.3.5.\cos {120^^\circ } \Leftrightarrow {T^2} = 49 \Rightarrow T = 7.\)
Lời giải
Đáp án
|
Phát biểu |
Đúng |
Sai |
|
Nhiệt độ của chênh lệch giữa cốc nước và nhiệt độ ngăn mát tủ lạnh sau khoảng thời gian t là hàm số có dạng \(y(t) = y(0){e^{kt}}\). |
X | |
|
Kết quả làm tròn đến chữ số thập phân thứ tư của k là −0,0145. |
X | |
|
Sau 60 phút trong tủ lạnh, nhiệt độ của cốc nước khoảng 10∘C (Kết quả làm tròn đến chữ số hàng đơn vị). |
X |
Giải thích
|
Lí do lựa chọn phương án |
1) |
Đúng vì: Do \(\frac{{y'(t)}}{{y(t)}} = k\) với k là hằng số. Lấy tích phân với cận từ 0 đến t hai vế. Ta được \(\int_0^t {\frac{{y'(t)}}{{y(t)}}} dt = \int_0^t k dt\) Kéo theo \(\ln \frac{{y(t)}}{{y(0)}} = kt\), hay \(y(t) = y(0).{e^{kt}}\). |
|
2) |
Đúng vì: Tính được \[y(0) = T(0) - {T_s} = 22 - 5 = 17\]. Ta có \(T(t) = {T_s} + y(t) = 5 + 17{e^{kt}}\). Thay t = 30 ta được \(T(30) = 5 + 17{e^{30k}}\). Mà \(T(30) = 16\) nên \(k = \ln \left( {\frac{{11}}{{17}}} \right):30 \approx - 0,0145\). |
|
|
3) |
Sai vì: Tính \(T(60) \approx 12\) (Kết quả làm tròn đến chữ số hàng đơn vị). |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.