Câu hỏi:

23/10/2024 1,133

Từ một tấm tôn hình vuông có cạnh 8 dm, bán Hùng cắt bỏ bốn phần như nhau ở bốn góc, sau đó bác hàn các mép lại để được một chiếc thùng (không nắp) như hình bên dưới

Media VietJack

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

 

ĐÚNG

SAI

Chiếc thùng nhận được là hình chóp cụt

¡

¡

Cạnh bên của chiếc thùng là 3 dm

¡

¡

Thùng có thể chứa được nhiều nhất 42 lít nước

¡

¡

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 

ĐÚNG

SAI

Chiếc thùng nhận được là hình chóp cụt

¤

¡

Cạnh bên của chiếc thùng là 3 dm

¡

¤

Thùng có thể chứa được nhiều nhất 42 lít nước

¤

¡

Phương pháp giải

b) Cạnh bên của chiếc thùng là độ dài cạnh DD’

Kẻ DQ vuông góc với D’C’

c) Số lít nước mà thùng có thể chứa được nhiều nhất bằng thể tích của hình chóp cụt.

Gọi O và O’ lần lượt là tâm của ABCD và A’B’C’D’

Qua D kẻ DH vuông góc với O’D’

Đáy A’B’C’D’ có cạnh là 6dm

Tính:

O′D′

OD

Lời giải

a) Chiếc thùng nhận được là hình chóp cụt

AB//A'B'

=>AB//(A'B'C'D')

AD//A'D'

=>AD//(A'B'C'D')

=>(A'B'C'D')//(ABCD)

=>Chiếc thùng có dạng hình chóp cụt vì khi bác Hùng cắt bỏ bốn phần như nhau ở bốn góc của tấm tôn vuông, sẽ tạo thành bốn tam giác vuông cân

b) Cạnh bên của chiếc thùng là độ dài cạnh DD’

Media VietJack

Kẻ DQ vuông góc với D’C’

Khi đó DQ=2,5dm và D’Q=1,5dm

\(D'{D^2} = D{Q^2} + D'{Q^2} = \frac{{17}}{2} \Rightarrow DD' = \frac{{\sqrt {34} }}{2}\)dm

c) Số lít nước mà thùng có thể chứa được nhiều nhất bằng thể tích của hình chóp cụt.

Media VietJack

Gọi O và O’ lần lượt là tâm của ABCD và A’B’C’D’

Qua D kẻ DH vuông góc với O’D’

Đáy A’B’C’D’ có cạnh là 6dm

\(O'D' = \frac{6}{{\sqrt 2 }} = 3\sqrt 2 \,\,({\rm{dm}})\)

\(OD = \frac{3}{{\sqrt 2 }} = \frac{{3\sqrt 2 }}{2}\,\,({\rm{dm}})\)

Xét mặt chứa đường chéo của hình vuông, nó là hình thang cân có chiều cao bằng chiều cao của hình chóp cụt và được \(h = \sqrt {D'{D^2} - D'{H^2}}  = \sqrt {\frac{{17}}{2} - {{\left( {3\sqrt 2  - \frac{{3\sqrt 2 }}{2}} \right)}^2}}  = 2\,\,(dm)\)

Thể tích cần tìm là \(V = \frac{1}{3}.2.\left( {{3^2} + {6^2} + 3.6} \right) = 42\) lít.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với giá trị nào của m thì hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\).

Xem đáp án » 23/10/2024 5,379

Câu 2:

Tính các giới hạn sau \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{|2 - x|}}{{2{x^2} - 5x + 2}}\)

Xem đáp án » 23/10/2024 1,492

Câu 3:

Cho cấp số cộng (un) có u1 = 3 và công sai d = 2, và cấp số cộng (vn) có v1 = 2 và công sai d′ = 3. Gọi X, Y là tập hợp chứa 1000 số hạng đầu tiên của mỗi cấp số cộng. Chọn ngẫu nhiên 2 phần tử bất kỳ trong tập hợp X ∪ Y. Xác suất để chọn được 2 phần tử bằng nhau gần với số nào nhất trong các số dưới đây?

Xem đáp án » 23/10/2024 1,175

Câu 4:

Truyện được kể theo ngôi kể nào?

Truyện được kể theo _______

Xem đáp án » 13/07/2024 1,129

Câu 5:

Cho dãy số có giới hạn \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 1}\\{{u_{n + 1}} = \frac{1}{{2 - {u_n}}},n \ge 1}\end{array}} \right.\). Tính lim un.

Xem đáp án » 23/10/2024 953

Câu 6:

Dẫn nhiệt có thể xảy ra trong môi trường nào:

Xem đáp án » 29/06/2024 928

Bình luận


Bình luận