Câu hỏi:

23/10/2024 10,877 Lưu

Với giá trị nào của m thì hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\).

A. m ≤ −4.                    
B. m < −4.                    
C. m > 0.    
D. m < 4.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\) khi phương trình \({x^2} - 2x - 3 - m = 0\) vô nghiệm

Hay Δ′ = m + 4 < 0 ⇔ m < −4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{|2 - x|}}{{2{x^2} - 5x + 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x - 2}}{{(x - 2)(2x - 1)}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{2x - 1}} = \frac{1}{3}\)

Lời giải

Diện tích của hình vuông lập thành cấp số nhân với số hạng đầu tiên là \({u_1} = \frac{1}{4},q = \frac{1}{4}\).

Do đó số hạng tổng quát là \({u_n} = \frac{1}{4}.{\left( {\frac{1}{4}} \right)^{n - 1}} = \frac{1}{{{4^n}}}\,\,(n \ge 1)\). Để diện tích của hình vuông tô màu nhỏ hơn \(\frac{1}{{1000}} \Leftrightarrow \frac{1}{{{4^n}}} < \frac{1}{{1000}} \Leftrightarrow {4^n} > 1000 \Rightarrow n \ge 5\). Vậy tô màu từ hình vuông thứ 5 thỏa mãn yêu cầu bài toán.

Câu 5

A. lim un = −1.             
B. lim un = 0.                
C. lim un = \(\frac{1}{2}\).                
D. lim un = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP