Cho tứ diện \({\rm{ABCD}}\). Lấy các điểm \({\rm{M}}\) và \({\rm{N}}\) lần lượt thuộc \({\rm{AD}}\) và \({\rm{BC}}\) sao cho \(\overrightarrow {AM} = 3\overrightarrow {MD} \), \(\overrightarrow {NB} = - 3\overrightarrow {NC} \). Biết \(\overrightarrow {AB} = \vec a,\overrightarrow {CD} = \vec b\). Biết \(\overrightarrow {MN} = x\vec a - y\vec b\).
Khi đó x + y = _______
Quảng cáo
Trả lời:
Đáp án: “1”
Phương pháp giải
Lời giải

Ta có: \(\overrightarrow {MN} = \overrightarrow {MD} + \overrightarrow {DC} + \overrightarrow {CN} \) (1)
Lại có \(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AB} + \overrightarrow {BN} \) (2)
Lấy (2) + 3.(1) ta được: \(4\overrightarrow {MN} = \overrightarrow {AB} + 3\overrightarrow {DC} \)
Do đó \(\overrightarrow {MN} = \frac{1}{4}\vec a - \frac{3}{4}\vec b\)
Vậy \(x + y = \frac{1}{4} + \frac{3}{4} = 1\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\) khi phương trình \({x^2} - 2x - 3 - m = 0\) vô nghiệm
Hay Δ′ = m + 4 < 0 ⇔ m < −4.
Câu 2
Tính các giới hạn sau \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{|2 - x|}}{{2{x^2} - 5x + 2}}\)
Lời giải
\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{|2 - x|}}{{2{x^2} - 5x + 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x - 2}}{{(x - 2)(2x - 1)}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{2x - 1}} = \frac{1}{3}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

