Câu hỏi:

23/10/2024 5,126 Lưu

Để trang trí cho quán trà sữa sắp mở cửa của mình, bạn Việt quyết định tô màu một mảng tường hình vuông cạnh bằng 1 m. Phần tô màu dự kiến là các hình vuông nhỏ được đánh số lần lượt là 1,2,3…n,…, trong đó cạnh của hình vuông kế tiếp bằng một nửa cạnh hình vuông trước đó như hình vẽ. Giả sử quá trình tô màu của Việt có thể diễn ra nhiều giờ. Hỏi bạn Việt tô màu đến hình vuông thứ mấy thì diện tích của hình vuông được tô bắt đầu nhỏ hơn \(\frac{1}{{1000}}\left( {{m^2}} \right)\)?

Media VietJack

A. 6                                  

B. 3                              
C. 5    
D. 4

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Diện tích của hình vuông lập thành cấp số nhân với số hạng đầu tiên là \({u_1} = \frac{1}{4},q = \frac{1}{4}\).

Do đó số hạng tổng quát là \({u_n} = \frac{1}{4}.{\left( {\frac{1}{4}} \right)^{n - 1}} = \frac{1}{{{4^n}}}\,\,(n \ge 1)\). Để diện tích của hình vuông tô màu nhỏ hơn \(\frac{1}{{1000}} \Leftrightarrow \frac{1}{{{4^n}}} < \frac{1}{{1000}} \Leftrightarrow {4^n} > 1000 \Rightarrow n \ge 5\). Vậy tô màu từ hình vuông thứ 5 thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. m ≤ −4.                    
B. m < −4.                    
C. m > 0.    
D. m < 4.

Lời giải

Lời giải

Hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\) khi phương trình \({x^2} - 2x - 3 - m = 0\) vô nghiệm

Hay Δ′ = m + 4 < 0 ⇔ m < −4.

Lời giải

\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{|2 - x|}}{{2{x^2} - 5x + 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x - 2}}{{(x - 2)(2x - 1)}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{2x - 1}} = \frac{1}{3}\)

Câu 5

A. lim un = −1.             
B. lim un = 0.                
C. lim un = \(\frac{1}{2}\).                
D. lim un = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP