Câu hỏi:
24/10/2024 310
Cho hàm số \(f\left( x \right) = \left( {m - 1} \right){x^3} + 2m{x^2} + 1\), với \(m\) là tham số.
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:
Với \(m = \)_______, hàm số đã cho có một điểm cực trị.
Có _______ giá trị nguyên của tham số \(m\) thuộc \(\left[ { - 10;10} \right]\) để \(\mathop {{\rm{max}}}\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right)\).
Cho hàm số \(f\left( x \right) = \left( {m - 1} \right){x^3} + 2m{x^2} + 1\), với \(m\) là tham số.
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Với \(m = \)_______, hàm số đã cho có một điểm cực trị.
Có _______ giá trị nguyên của tham số \(m\) thuộc \(\left[ { - 10;10} \right]\) để \(\mathop {{\rm{max}}}\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right)\).
Quảng cáo
Trả lời:
Đáp án
Với \(m = \)1 , hàm số đã cho có một điểm cực trị.
Có 10 giá trị nguyên của tham số \(m\) thuộc \(\left[ { - 10;10} \right]\) để \(\mathop {{\rm{max}}}\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right)\).
Giải thích
Để hàm số có một điểm cực trị thì \(m - 1 = 0 \Leftrightarrow m = 1\). Khi đó \(f\left( x \right) = 2{x^2} + 1\) (thỏa mãn có 1 điểm cực trị).
Với \(m = 1\) ta có: \(f\left( x \right) = 2{x^2} + 1\).
Vì hàm số \(f\left( x \right) = 2{x^2} + 1\) là hàm số chẵn nên nhận trục \(Oy\) làm trục đối xứng
\( \Rightarrow \mathop {{\rm{max}}}\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right)\)
Với \(m \ne 1\) ta có: \(f'\left( x \right) = 3\left( {m - 1} \right){x^2} + 4mx;f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{x_1} = 0}\\{{x_2} = \frac{{4m}}{{3\left( {1 - m} \right)}}}\end{array}} \right.\)
Xét \({x_2} < {x_1} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m > 1}\\{m < 0}\end{array}} \right.\), ta có bảng biến thiên của hàm số \(y = f\left( x \right)\) như sau:

Để \(\mathop {{\rm{max}}}\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right)\) thì \(\left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{{x_2} < - 2}\\{f\left( { - 2} \right) \le f\left( 3 \right)}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{ - 2 \le {x_2}}\\{f\left( {{x_2}} \right) \le f\left( 3 \right)}\end{array}} \right.}\end{array}} \right.\)
\(\) \[ \Leftrightarrow \left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{\frac{{4m}}{{3(1 - m)}} < - 2}\\{9 \le 45m - 26}\end{array}} \right.\\\left\{ \begin{array}{l}\frac{{4m}}{{3(1 - m)}} \ge - 2\\\frac{{32{m^3}}}{{27{{(m - 1)}^2}}} + 1 \le 45m - 26\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{1 < m < 3}\\{m > \frac{7}{9}}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m \ge 3}\\{m \le 1}\end{array}} \right.}\\{\left[ {\begin{array}{*{20}{l}}{m = \frac{9}{{13}}}\\{m \ge \frac{9}{7}}\end{array}} \right.}\end{array}} \right.\end{array} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{1 < m < 3}\\{m \ge 3}\\{m = \frac{9}{{13}}}\end{array}} \right.\] (thỏa mãn điều kiện)
Xét \({x_2} > {x_1} \Leftrightarrow 0 < m < 1\), ta có bảng biến thiên của hàm số \(y = f\left( x \right)\) như sau:

Để thì \(\left\{ {\begin{array}{*{20}{c}}{{x_2} \ge 3}\\{f\left( { - 2} \right) \le f\left( 3 \right)}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{4m}}{{3\left( {1 - m} \right)}} \ge 3}\\{9 \le 45m - 26}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{9}{{13}} \le m < 1}\\{m \le \frac{7}{9}}\end{array} \Leftrightarrow \frac{7}{9} \le m < 1} \right.} \right.\) (thỏa mãn điều kiện)
Kết hợp các trường hợp và \(m \in \left[ { - 10;10} \right],m \in \mathbb{Z}\) nên \(m \in \left\{ {1;2; \ldots ;10} \right\}\).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đơn vị của năng lượng liên kết là J hoặc MeV, trong đó: 1MeV = 1,6.10-13 J.
Chọn A, B
Lời giải
Theo đoạn thông tin: “Virus nhận ra các tế bào chủ của nó theo nguyên tắc “chìa và khóa” giữa các protein bề mặt của virus với các phân tử thụ thể đặc hiệu trên bề mặt ngoài của tế bào chủ”, tức là không phải virus nào cũng xâm nhập được vào hết các loại tế bào, mà cần có sự liên kết đặc hiệu với tùy từng loại thụ thể trên bề mặt tế bào. Chọn B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.