Câu hỏi:

24/10/2024 310

Cho hàm số \(f\left( x \right) = \left( {m - 1} \right){x^3} + 2m{x^2} + 1\), với \(m\) là tham số.

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Cho hàm số \(f\left( x \right) = \left( {m - 1} \right){x^3} + 2m{x^2} + 1\), với \(m\) là tham số. Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau: (ảnh 1)

Với \(m = \)_______, hàm số đã cho có một điểm cực trị.

Có _______ giá trị nguyên của tham số \(m\) thuộc \(\left[ { - 10;10} \right]\) để \(\mathop {{\rm{max}}}\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

Với \(m = \)1 , hàm số đã cho có một điểm cực trị.

10  giá trị nguyên của tham số \(m\) thuộc \(\left[ { - 10;10} \right]\) để \(\mathop {{\rm{max}}}\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right)\).

Giải thích

Để hàm số có một điểm cực trị thì \(m - 1 = 0 \Leftrightarrow m = 1\). Khi đó \(f\left( x \right) = 2{x^2} + 1\) (thỏa mãn có 1 điểm cực trị).

Với \(m = 1\) ta có: \(f\left( x \right) = 2{x^2} + 1\).

Vì hàm số \(f\left( x \right) = 2{x^2} + 1\) là hàm số chẵn nên nhận trục \(Oy\) làm trục đối xứng

\( \Rightarrow \mathop {{\rm{max}}}\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right)\)

Với \(m \ne 1\) ta có: \(f'\left( x \right) = 3\left( {m - 1} \right){x^2} + 4mx;f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{x_1} = 0}\\{{x_2} = \frac{{4m}}{{3\left( {1 - m} \right)}}}\end{array}} \right.\)

Xét \({x_2} < {x_1} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m > 1}\\{m < 0}\end{array}} \right.\), ta có bảng biến thiên của hàm số \(y = f\left( x \right)\) như sau:

Cho hàm số \(f\left( x \right) = \left( {m - 1} \right){x^3} + 2m{x^2} + 1\), với \(m\) là tham số. Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau: (ảnh 2)

Để \(\mathop {{\rm{max}}}\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right)\) thì \(\left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{{x_2} <  - 2}\\{f\left( { - 2} \right) \le f\left( 3 \right)}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{ - 2 \le {x_2}}\\{f\left( {{x_2}} \right) \le f\left( 3 \right)}\end{array}} \right.}\end{array}} \right.\)

\(\) \[ \Leftrightarrow \left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{\frac{{4m}}{{3(1 - m)}} <  - 2}\\{9 \le 45m - 26}\end{array}} \right.\\\left\{ \begin{array}{l}\frac{{4m}}{{3(1 - m)}} \ge  - 2\\\frac{{32{m^3}}}{{27{{(m - 1)}^2}}} + 1 \le 45m - 26\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{1 < m < 3}\\{m > \frac{7}{9}}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m \ge 3}\\{m \le 1}\end{array}} \right.}\\{\left[ {\begin{array}{*{20}{l}}{m = \frac{9}{{13}}}\\{m \ge \frac{9}{7}}\end{array}} \right.}\end{array}} \right.\end{array} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{1 < m < 3}\\{m \ge 3}\\{m = \frac{9}{{13}}}\end{array}} \right.\] (thỏa mãn điều kiện)

Xét \({x_2} > {x_1} \Leftrightarrow 0 < m < 1\), ta có bảng biến thiên của hàm số \(y = f\left( x \right)\) như sau:

Cho hàm số \(f\left( x \right) = \left( {m - 1} \right){x^3} + 2m{x^2} + 1\), với \(m\) là tham số. Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau: (ảnh 3)

Để  thì \(\left\{ {\begin{array}{*{20}{c}}{{x_2} \ge 3}\\{f\left( { - 2} \right) \le f\left( 3 \right)}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{4m}}{{3\left( {1 - m} \right)}} \ge 3}\\{9 \le 45m - 26}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{9}{{13}} \le m < 1}\\{m \le \frac{7}{9}}\end{array} \Leftrightarrow \frac{7}{9} \le m < 1} \right.} \right.\) (thỏa mãn điều kiện)

Kết hợp các trường hợp và \(m \in \left[ { - 10;10} \right],m \in \mathbb{Z}\) nên \(m \in \left\{ {1;2; \ldots ;10} \right\}\).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đơn vị của năng lượng liên kết là J hoặc MeV, trong đó: 1MeV = 1,6.10-13 J.

Chọn A, B 

Câu 2

Lời giải

Theo đoạn thông tin: “Virus nhận ra các tế bào chủ của nó theo nguyên tắc “chìa và khóa” giữa các protein bề mặt của virus với các phân tử thụ thể đặc hiệu trên bề mặt ngoài của tế bào chủ”, tức là không phải virus nào cũng xâm nhập được vào hết các loại tế bào, mà cần có sự liên kết đặc hiệu với tùy từng loại thụ thể trên bề mặt tế bào. Chọn B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP