Câu hỏi:

24/10/2024 327 Lưu

Cho hàm số \(f\left( x \right) = \left( {m - 1} \right){x^3} + 2m{x^2} + 1\), với \(m\) là tham số.

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Cho hàm số \(f\left( x \right) = \left( {m - 1} \right){x^3} + 2m{x^2} + 1\), với \(m\) là tham số. Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau: (ảnh 1)

Với \(m = \)_______, hàm số đã cho có một điểm cực trị.

Có _______ giá trị nguyên của tham số \(m\) thuộc \(\left[ { - 10;10} \right]\) để \(\mathop {{\rm{max}}}\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

Với \(m = \)1 , hàm số đã cho có một điểm cực trị.

10  giá trị nguyên của tham số \(m\) thuộc \(\left[ { - 10;10} \right]\) để \(\mathop {{\rm{max}}}\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right)\).

Giải thích

Để hàm số có một điểm cực trị thì \(m - 1 = 0 \Leftrightarrow m = 1\). Khi đó \(f\left( x \right) = 2{x^2} + 1\) (thỏa mãn có 1 điểm cực trị).

Với \(m = 1\) ta có: \(f\left( x \right) = 2{x^2} + 1\).

Vì hàm số \(f\left( x \right) = 2{x^2} + 1\) là hàm số chẵn nên nhận trục \(Oy\) làm trục đối xứng

\( \Rightarrow \mathop {{\rm{max}}}\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right)\)

Với \(m \ne 1\) ta có: \(f'\left( x \right) = 3\left( {m - 1} \right){x^2} + 4mx;f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{x_1} = 0}\\{{x_2} = \frac{{4m}}{{3\left( {1 - m} \right)}}}\end{array}} \right.\)

Xét \({x_2} < {x_1} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m > 1}\\{m < 0}\end{array}} \right.\), ta có bảng biến thiên của hàm số \(y = f\left( x \right)\) như sau:

Cho hàm số \(f\left( x \right) = \left( {m - 1} \right){x^3} + 2m{x^2} + 1\), với \(m\) là tham số. Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau: (ảnh 2)

Để \(\mathop {{\rm{max}}}\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right)\) thì \(\left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{{x_2} <  - 2}\\{f\left( { - 2} \right) \le f\left( 3 \right)}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{ - 2 \le {x_2}}\\{f\left( {{x_2}} \right) \le f\left( 3 \right)}\end{array}} \right.}\end{array}} \right.\)

\(\) \[ \Leftrightarrow \left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{\frac{{4m}}{{3(1 - m)}} <  - 2}\\{9 \le 45m - 26}\end{array}} \right.\\\left\{ \begin{array}{l}\frac{{4m}}{{3(1 - m)}} \ge  - 2\\\frac{{32{m^3}}}{{27{{(m - 1)}^2}}} + 1 \le 45m - 26\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{1 < m < 3}\\{m > \frac{7}{9}}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m \ge 3}\\{m \le 1}\end{array}} \right.}\\{\left[ {\begin{array}{*{20}{l}}{m = \frac{9}{{13}}}\\{m \ge \frac{9}{7}}\end{array}} \right.}\end{array}} \right.\end{array} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{1 < m < 3}\\{m \ge 3}\\{m = \frac{9}{{13}}}\end{array}} \right.\] (thỏa mãn điều kiện)

Xét \({x_2} > {x_1} \Leftrightarrow 0 < m < 1\), ta có bảng biến thiên của hàm số \(y = f\left( x \right)\) như sau:

Cho hàm số \(f\left( x \right) = \left( {m - 1} \right){x^3} + 2m{x^2} + 1\), với \(m\) là tham số. Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau: (ảnh 3)

Để  thì \(\left\{ {\begin{array}{*{20}{c}}{{x_2} \ge 3}\\{f\left( { - 2} \right) \le f\left( 3 \right)}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{4m}}{{3\left( {1 - m} \right)}} \ge 3}\\{9 \le 45m - 26}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{9}{{13}} \le m < 1}\\{m \le \frac{7}{9}}\end{array} \Leftrightarrow \frac{7}{9} \le m < 1} \right.} \right.\) (thỏa mãn điều kiện)

Kết hợp các trường hợp và \(m \in \left[ { - 10;10} \right],m \in \mathbb{Z}\) nên \(m \in \left\{ {1;2; \ldots ;10} \right\}\).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đơn vị của năng lượng liên kết là J hoặc MeV, trong đó: 1MeV = 1,6.10-13 J.

Chọn A, B 

Lời giải

Đáp án

Xung quanh một bờ hồ hình tròn có trồng 20 cây cau cảnh. Người ta dự định chặt bớt 5 cây sao cho không có hai cây nào kề nhau bị chặt. Có (1) ___4004___ cách thực hiện khác nhau.

Giải thích

Ta gọi một trong số 20 cây cau cảnh trong đầu bài là \(A\). Có hai trường hợp sau:

Trường hợp 1: Cây \(A\) không bị chặt.

Sau khi chặt đi 5 cây, còn lại 15 cây. Xen kẽ giữa 15 cây này có 15 khoảng trống. 5 cây bị chặt tương ứng với 5 trong số 15 khoảng trống nói trên. Do đó số cách thực hiện trong trường hợp này là \(C_{15}^5 = 3003\).

Trường hợp 2: Cây \(A\) bị chặt.

Sau khi chặt tiếp 4 cây, còn lại 15 cây. Xen kẽ giữa 15 cây này có 14 khoảng trống không kề với vị trí của cây \(A\). 4 cây bị chặt (không kể cây \(A\)) tương ứng với 4 trong số 14 khoảng trống nói trên. Do đó số cách thực hiện trong trường hợp này là \(C_{14}^4 = 1001\).

Theo quy tắc cộng, ta được số khả năng phải tìm là \(3003 + 1001 = 4004\) (cách).

 

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP