Câu hỏi:
24/10/2024 49Trong không gian \(Oxyz\), cho điểm \(E\left( {2;1;3} \right)\), mặt phẳng \(\left( P \right):2x + 2y - z - 3 = 0\) và mặt cầu \(\left( S \right):{(x - 3)^2} + {(y - 2)^2} + {(z - 5)^2} = 36\). Gọi \({\rm{\Delta }}\) là đường thẳng đi qua \(E\), nằm trong \(\left( P \right)\) và cắt \(\left( S \right)\) tại hai điểm \(A\) và \(B\) có khoảng cách nhỏ nhất. Biết \({\rm{\Delta }}\) có một vectơ chỉ phương \(\vec u = \left( {2023;{y_0};{z_0}} \right)\).
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sauGiá trị của \({y_0}\) bằng _______.
Giá trị của \({z_0}\) bằng _______.
Khoảng cách \(AB\) nhỏ nhất bằng \(2\sqrt a \) với \(a\) bằng _______.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án
Giá trị của \({y_0}\) bằng -2023.
Giá trị của \({z_0}\) bằng 0 .
Khoảng cách \(AB\) nhỏ nhất bằng \(2\sqrt a \) với \(a\) bằng 30 .
Giải thích
Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến là \(\overrightarrow {{n_P}} = \left( {2;2; - 1} \right)\).
Mặt cầu \(\left( S \right)\) có tâm \(I\left( {3;2;5} \right)\) và bán kính \(R = 6 \Rightarrow \overrightarrow {EI} = \left( {1;1;2} \right)\)
\( \Rightarrow IE = \sqrt {{1^2} + {1^2} + {2^2}} = \sqrt 6 < R \Rightarrow \) điểm \(E\) nằm trong mặt cầu \(\left( S \right)\).
Gọi \(H\) là hình chiếu của \(I\) trên mặt phẳng \(\left( P \right),A\) và \(B\) là hai giao điểm của \({\rm{\Delta }}\) với \(\left( S \right)\).
Khi đó, \(AB\) nhỏ nhất \( \Leftrightarrow d{(H;AB)_{{\rm{max}}}} \Leftrightarrow AB \bot HE\), mà \(AB \bot IH\) nên \(AB \bot \left( {HIE} \right) \Rightarrow AB \bot IE\).
Suy ra \(\overrightarrow {{u_{\rm{\Delta }}}} = \left[ {\overrightarrow {{n_P}} ;\overrightarrow {EI} } \right] = \left( {5; - 5;0} \right)\parallel \left( {1; - 1;0} \right)\) là một vectơ chỉ phương của \({\rm{\Delta }}\).
Suy ra \(\vec u = \left( {2023; - 2023;0} \right)\) là một vectơ chỉ phương của \({\rm{\Delta }}\), do đó \({y_0} = - 2023,{z_0} = 0\).
Ta có: \(IH = d\left( {I,\left( P \right)} \right) = \frac{{\left| {2.3 + 2.2 - 5 - 3} \right|}}{{\sqrt {{2^2} + {2^2} + {{( - 1)}^2}} }} = \frac{2}{3}\).
\({\rm{\Delta }}IHE\) vuông tại \(H:HE = \sqrt {I{E^2} - I{H^2}} = \sqrt {6 - {{\left( {\frac{2}{3}} \right)}^2}} = \frac{{5\sqrt 2 }}{3}\).
\({\rm{\Delta }}IHB\) vuông tại \(H:HB = \sqrt {I{B^2} - I{H^2}} = \sqrt {36 - {{\left( {\frac{2}{3}} \right)}^2}} = \frac{{8\sqrt 5 }}{3}\).
\(\Delta HEB\) vuông tại \(E:BE = \sqrt {H{B^2} - H{E^2}} = \sqrt {{{\left( {\frac{{8\sqrt 5 }}{3}} \right)}^2} - {{\left( {\frac{{5\sqrt 2 }}{3}} \right)}^2}} = \sqrt {30} \).
\( \Rightarrow AB = 2BE = 2\sqrt {30} \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Phần tư duy đọc hiểu
Hãy điền một cụm từ không quá hai tiếng để hoàn thành câu văn sau:
Trong sự phát triển của đời sống, giới trẻ ngày nay có xu hướng (1) ______ hình thức giải trí sang các hoạt động trực tuyến thay vì đọc sách, báo in như thập niên trước.
Câu 3:
Câu 4:
Virus nhận ra các tế bào chủ của nó theo nguyên tắc “chìa và khóa” nghĩa là
Câu 5:
Phân tư duy toán học
Câu 6:
Phần tư duy khoa học / giải quyết vấn đề
lớn hơn, nhỏ hơn
Gia tốc trọng trường trên bề mặt Trái Đất _______ gia tốc trọng trường trên bề mặt Mặt Trăng.
Gia tốc trọng trường trên bề mặt Trái Đất _______ gia tốc trọng trường trên bề mặt Sao Mộc.
Câu 7:
Phát biểu sau đây đúng hay sai?
Theo thí nghiệm 1, phân lập B có số lượng vi khuẩn phát triển lớn nhất khi được cung cấp nguồn carbon là galactose.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 5)
Top 5 đề thi Đánh giá năng lực trường ĐH Bách khoa Hà Nội năm 2023 - 2024 có đáp án (Đề 1)
Đề thi Đánh giá tư duy tốc chiến Đại học Bách khoa năm 2023-2024 có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 3)
ĐGTD ĐH Bách khoa - Sử dụng ngôn ngữ Tiếng Anh - Thì tương lai hoàn thành
về câu hỏi!