Gọi \(S\) là tập hợp tất cả các giá trị của tham số \(m\) để bất phương trình \({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - 5x + m} \right) > {\rm{lo}}{{\rm{g}}_3}\left( {x - 2} \right)\) có tập nghiệm chứa khoảng \(\left( {2; + \infty } \right)\). Khẳng định nào sau đây là đúng?
Quảng cáo
Trả lời:
Giải thích
Ta có:
\({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - 5x + m} \right) > {\rm{lo}}{{\rm{g}}_3}\left( {x - 2} \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x - 2 > 0}\\{{x^2} - 5x + m > x - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > 2}\\{m > - {x^2} + 6x - 2}\end{array}} \right.} \right.\).
Bất phương trình \({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - 5x + m} \right) > {\rm{lo}}{{\rm{g}}_3}\left( {x - 2} \right)\) có tập nghiệm chứa khoảng \(\left( {2; + \infty } \right)\)
\( \Leftrightarrow m > - {x^2} + 6x - 2\) có nghiệm với mọi \(x \in \left( {2; + \infty } \right)\).
Xét hàm số \(f\left( x \right) = - {x^2} + 6x - 2\) trên \(\left( {2; + \infty } \right)\).
Ta có \(f'\left( x \right) = - 2x + 6,f'\left( x \right) = 0 \Leftrightarrow x = 3\)
Bảng biến thiên
![Gọi \(S\) là tập hợp tất cả các giá trị của tham số \(m\) để bất phương trình \({\rm{lo}}{{\rm{g}}_3}\left( {{x^2} - 5x + m} \right) > {\rm{lo}}{{\rm{g}}_3}\left( {x - 2} \right)\) có tập nghiệm chứa khoảng \(\left( {2; + \infty } \right)\). Khẳng định nào sau đây là đúng? A. \(S = \left( {7; + \infty } \right)\) B. \(S = \left[ {6; + \infty } \right)\). C. \(S = \left( { - \infty ;4} \right)\). D. \(S = \left( { - \infty ;5} \right]\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid13-1729744217.png)
Dựa vào bảng biến thiên ta có: \(m > - {x^2} + 6x - 2\) có nghiệm với mọi \(x \in \left( {2; + \infty } \right) \Leftrightarrow m > 7\).
Chọn A
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đơn vị của năng lượng liên kết là J hoặc MeV, trong đó: 1MeV = 1,6.10-13 J.
Chọn A, B
Lời giải
Đáp án
Xung quanh một bờ hồ hình tròn có trồng 20 cây cau cảnh. Người ta dự định chặt bớt 5 cây sao cho không có hai cây nào kề nhau bị chặt. Có (1) ___4004___ cách thực hiện khác nhau.
Giải thích
Ta gọi một trong số 20 cây cau cảnh trong đầu bài là \(A\). Có hai trường hợp sau:
Trường hợp 1: Cây \(A\) không bị chặt.
Sau khi chặt đi 5 cây, còn lại 15 cây. Xen kẽ giữa 15 cây này có 15 khoảng trống. 5 cây bị chặt tương ứng với 5 trong số 15 khoảng trống nói trên. Do đó số cách thực hiện trong trường hợp này là \(C_{15}^5 = 3003\).
Trường hợp 2: Cây \(A\) bị chặt.
Sau khi chặt tiếp 4 cây, còn lại 15 cây. Xen kẽ giữa 15 cây này có 14 khoảng trống không kề với vị trí của cây \(A\). 4 cây bị chặt (không kể cây \(A\)) tương ứng với 4 trong số 14 khoảng trống nói trên. Do đó số cách thực hiện trong trường hợp này là \(C_{14}^4 = 1001\).
Theo quy tắc cộng, ta được số khả năng phải tìm là \(3003 + 1001 = 4004\) (cách).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.