Câu hỏi:
24/10/2024 51Điền số tự nhiên thích hợp vào các chỗ trống.
Từ một miếng gỗ là khối cầu có bán kính 1dm, bác thợ mộc muốn tạo thành một khối trụ sao cho hai đường tròn đáy của khối trụ thuộc mặt cầu của khối cầu đã cho (xem hình minh họa).
Gọi \(h,r\) lần lượt là chiều cao và bán kính đáy của khối trụ (tính theo đơn vị \(dm\)). Khi đó ta có \(4{r^2} + {h^2} = \) (1) ________.
Trong các khối trụ thỏa mãn tính chất trên, biết rằng khối trụ có diện tích toàn phần lớn nhất là \(\left( {a + \sqrt b } \right)\pi {\rm{d}}{{\rm{m}}^2}\) (với \({\rm{a}},{\rm{b}}\) là hai số nguyên). Khi đó \(a + b = \) (2) ________.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án
Gọi \(h,r\) lần lượt là chiều cao và bán kính đáy của khối trụ (tính theo đơn vị \(dm\)). Khi đó ta có \(4{r^2} + {h^2} = \) (1) ____4____.
Trong các khối trụ thỏa mãn tính chất trên, biết rằng khối trụ có diện tích toàn phần lớn nhất là \(\left( {a + \sqrt b } \right)\pi {\rm{d}}{{\rm{m}}^2}\) (với \({\rm{a}},{\rm{b}}\) là hai số nguyên). Khi đó \(a + b = \) (2) ____6____.
Giải thích
Cách 1. Ta có: \({r^2} + \frac{{{h^2}}}{4} = 1 \Rightarrow 4{r^2} + {h^2} = 4\).
\({S_{tp}} = 2\pi r\left( {r + h} \right) = 2\pi \left( {{r^2} + rh} \right)\) (1).
Áp dụng bất đẳng thức Cô-si ta có:
\(1 = \left( {\frac{{\sqrt 5 - 1}}{2}} \right){r^2} + \left( {\frac{{3 - \sqrt 5 }}{2}{r^2} + \frac{{{h^2}}}{4}} \right) \ge \left( {\frac{{\sqrt 5 - 1}}{2}} \right){r^2} + 2\sqrt {\frac{{3 - \sqrt 5 }}{2}{r^2}.\frac{{{h^2}}}{4}} = \left( {\frac{{\sqrt 5 - 1}}{2}} \right)\left( {{r^2} + rh} \right)\,\,\left( 2 \right)\).
Kết hợp (1) và (2) ta suy ra \({S_{tp}} \le \pi \left( {1 + \sqrt 5 } \right)\).
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = 5}\end{array}} \right.\)
Cách 2. Ta có: \({r^2} + \frac{{{h^2}}}{4} = 1 \Rightarrow 4{r^2} + {h^2} = 4\).
\({S_{tp}} = 2\pi \left( {{r^2} + rh} \right) = 8\pi \left( {\frac{{{r^2} + rh}}{{4{r^2} + {h^2}}}} \right)\)
\( = 8\pi \left( {\frac{{{{\left( {\frac{r}{h}} \right)}^2} + \frac{r}{h}}}{{4{{\left( {\frac{r}{h}} \right)}^2} + 1}}} \right) = 8\pi \frac{{{t^2} + t}}{{4{t^2} + 1}}\)
Khảo sát hàm \(f\left( t \right) = \frac{{{t^2} + t}}{{4{t^2} + 1}},t > 0\) ta suy ra \({\rm{max}}{S_{tp}} = \pi \left( {1 + \sqrt 5 } \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Phần tư duy đọc hiểu
Hãy điền một cụm từ không quá hai tiếng để hoàn thành câu văn sau:
Trong sự phát triển của đời sống, giới trẻ ngày nay có xu hướng (1) ______ hình thức giải trí sang các hoạt động trực tuyến thay vì đọc sách, báo in như thập niên trước.
Câu 3:
Virus nhận ra các tế bào chủ của nó theo nguyên tắc “chìa và khóa” nghĩa là
Câu 4:
Câu 5:
Phần tư duy khoa học / giải quyết vấn đề
lớn hơn, nhỏ hơn
Gia tốc trọng trường trên bề mặt Trái Đất _______ gia tốc trọng trường trên bề mặt Mặt Trăng.
Gia tốc trọng trường trên bề mặt Trái Đất _______ gia tốc trọng trường trên bề mặt Sao Mộc.
Câu 6:
Phân tư duy toán học
Câu 7:
Phát biểu sau đây đúng hay sai?
Theo thí nghiệm 1, phân lập B có số lượng vi khuẩn phát triển lớn nhất khi được cung cấp nguồn carbon là galactose.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá tư duy tốc chiến Đại học Bách khoa năm 2023-2024 có đáp án (Đề 1)
ĐGTD ĐH Bách khoa - Sử dụng ngôn ngữ Tiếng Anh - Thì tương lai hoàn thành
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
ĐGTD ĐH Bách khoa - Sử dụng ngôn ngữ Tiếng Anh - Thì hiện tại đơn
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Top 5 đề thi Đánh giá năng lực trường ĐH Bách khoa Hà Nội năm 2023 - 2024 có đáp án (Đề 1)
về câu hỏi!