Câu hỏi:
24/10/2024 229Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} = 4\) và điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) thuộc đường thẳng \(d:\left\{ \begin{array}{l}x = 1 - t\\y = 1 + t\\z = 2\end{array} \right.\). Ba điểm phân biệt \(A,B,C\) cùng thuộc mặt cầu \(\left( S \right)\) sao cho \(MA,MB,MC\) là ba tiếp tuyến của mặt cầu. Biết rằng mặt phẳng \(\left( {ABC} \right)\) đi qua điểm \(D\left( {1;2;1} \right)\) và có vectơ pháp tuyến \(\vec n = \left( {a;b;1} \right)\).
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:
Giá trị của \(a + b\) bằng _______.
Tọa độ điểm \(M\) là ( _______; _______; 2).
Quảng cáo
Trả lời:
Đáp án
Giá trị của \(a + b\) bằng 1 .
Tọa độ điểm \(M\) là ( 2 ; 0 ; 2).
Giải thích
Vì \(M\left( {{x_0};{y_0};{z_0}} \right) \in d:\left\{ {\begin{array}{*{20}{l}}{x = 1 - t}\\{y = 1 + t{\rm{\;n\^e n\;}}{x_0} + {y_0} + {z_0} = \left( {1 - t} \right) + \left( {1 + t} \right) + 2 = 4.}\\{z = 2}\end{array}} \right.\)
Mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} = 4\) có tâm \(O\left( {0;0;0} \right)\), bán kính \(R = 2\).
Vì \(MA,MB,MC\) là tiếp tuyến của mặt cầu \(\left( S \right)\) nên \(MO\) vuông góc với mặt phẳng \(\left( {ABC} \right)\).
Gọi \(H = MO \cap \left( {ABC} \right)\) suy ra \(AH \bot MO\).
Mặt phẳng \(\left( {ABC} \right)\) đi qua điểm \(D\left( {1;2;1} \right)\) và có vectơ pháp tuyến là \(\overrightarrow {OM} = \left( {{x_0};{y_0};{z_0}} \right)\) nên có phương trình là: \({x_0}\left( {x - 1} \right) + {y_0}\left( {y - 2} \right) + {z_0}\left( {z - 1} \right) = 0\).
Vì \(MA\) là tiếp tuyến của mặt cầu \(\left( S \right)\) nên \(MA \bot OA\) hay tam giác \(MAO\) vuông tại \(A\). Suy ra \(OH.OM = O{A^2} = {R^2} = 4\).
Ta có: \(OH = d\left( {O,\left( {ABC} \right)} \right) = \frac{{\left| { - {x_0} - 2{y_0} - {z_0}} \right|}}{{\sqrt {x_0^2 + y_0^2 + z_0^2} }} = \frac{{\left| {{y_0} + 4} \right|}}{{OM}}\) suy ra \(OH.OM = \left| {{y_0} + 4} \right|\).
Do đó \({y_0} = 0\).
Với \({y_0} = 0 \Rightarrow t = - 1\) suy ra điểm \(M\left( {2;0;2} \right)\).
Kiểm tra lại, với \(M\left( {2;0;2} \right)\) khi đó \(OM = 2\sqrt 2 ,OH = \frac{{\left| {0 + 4} \right|}}{{OM}} = \frac{4}{{2\sqrt 2 }} = \sqrt 2 \).
Phương trình mặt phẳng \(\left( {ABC} \right)\) là: \(2\left( {x - 1} \right) + 2\left( {z - 1} \right) = 0\) hay \(x + z - 2 = 0\).
\( \Rightarrow a = 1;b = 0 \Rightarrow a + b = 1\).
Mặt khác, \(MH = d\left( {M,\left( {ABC} \right)} \right) = \frac{{\left| {2 + 2 - 2} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \sqrt 2 \).
Ta có \(OH + MH = OM\) nên điểm \(H\) nằm giữa hai điểm \(O\) và \(M\) (thỏa mãn).
Vậy có duy nhất điểm \(M\left( {2;0;2} \right)\) thỏa mãn ycbt.
Đã bán 902
Đã bán 1,4k
Đã bán 851
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Virus nhận ra các tế bào chủ của nó theo nguyên tắc “chìa và khóa” nghĩa là
Câu 3:
Câu 4:
Xung quanh một bờ hồ hình tròn có trồng 20 cây cau cảnh. Người ta dự định chặt bớt 5 cây sao cho không có hai cây nào kề nhau bị chặt. Có (1) ______ cách thực hiện khác nhau.
Câu 5:
Phần tư duy đọc hiểu
Hãy điền một cụm từ không quá hai tiếng để hoàn thành câu văn sau:
Trong sự phát triển của đời sống, giới trẻ ngày nay có xu hướng (1) ______ hình thức giải trí sang các hoạt động trực tuyến thay vì đọc sách, báo in như thập niên trước.
Câu 6:
Phần tư duy khoa học / giải quyết vấn đề
lớn hơn, nhỏ hơn
Gia tốc trọng trường trên bề mặt Trái Đất _______ gia tốc trọng trường trên bề mặt Mặt Trăng.
Gia tốc trọng trường trên bề mặt Trái Đất _______ gia tốc trọng trường trên bề mặt Sao Mộc.
Câu 7:
Phát biểu sau đây đúng hay sai?
Theo thí nghiệm 1, phân lập B có số lượng vi khuẩn phát triển lớn nhất khi được cung cấp nguồn carbon là galactose.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận