Câu hỏi:

24/10/2024 229

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} = 4\) và điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) thuộc đường thẳng \(d:\left\{ \begin{array}{l}x = 1 - t\\y = 1 + t\\z = 2\end{array} \right.\). Ba điểm phân biệt \(A,B,C\) cùng thuộc mặt cầu \(\left( S \right)\) sao cho \(MA,MB,MC\) là ba tiếp tuyến của mặt cầu. Biết rằng mặt phẳng \(\left( {ABC} \right)\) đi qua điểm \(D\left( {1;2;1} \right)\) và có vectơ pháp tuyến \(\vec n = \left( {a;b;1} \right)\).

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} = 4\) và điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) thuộc đường thẳng \(d:\left\{ \begin{array}{l}x = 1 - t\\y = 1 + t\\z = 2\end{array} \right.\). Ba điểm phân biệt \(A,B,C\) cùng thuộc mặt cầu \(\left( S \right)\) sao cho \(MA,MB,MC\) là ba tiếp tuyến của mặt cầu. Biết rằng mặt phẳng \(\left( {ABC} \right)\) đi qua điểm \(D\left( {1;2;1} \right)\) và có vectơ pháp tuyến \(\vec n = \left( {a;b;1} \right)\). Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau: (ảnh 1)

Giá trị của \(a + b\) bằng _______.

Tọa độ điểm \(M\) là ( _______; _______; 2).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

Giá trị của \(a + b\) bằng 1 .

Tọa độ điểm \(M\) là ( 2 ; 0 ; 2).

Giải thích

Vì \(M\left( {{x_0};{y_0};{z_0}} \right) \in d:\left\{ {\begin{array}{*{20}{l}}{x = 1 - t}\\{y = 1 + t{\rm{\;n\^e n\;}}{x_0} + {y_0} + {z_0} = \left( {1 - t} \right) + \left( {1 + t} \right) + 2 = 4.}\\{z = 2}\end{array}} \right.\)

Mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} = 4\) có tâm \(O\left( {0;0;0} \right)\), bán kính \(R = 2\).

Vì \(MA,MB,MC\) là tiếp tuyến của mặt cầu \(\left( S \right)\) nên \(MO\) vuông góc với mặt phẳng \(\left( {ABC} \right)\).

Gọi \(H = MO \cap \left( {ABC} \right)\) suy ra \(AH \bot MO\).

Mặt phẳng \(\left( {ABC} \right)\) đi qua điểm \(D\left( {1;2;1} \right)\) và có vectơ pháp tuyến là \(\overrightarrow {OM}  = \left( {{x_0};{y_0};{z_0}} \right)\) nên có phương trình là: \({x_0}\left( {x - 1} \right) + {y_0}\left( {y - 2} \right) + {z_0}\left( {z - 1} \right) = 0\).

Vì \(MA\) là tiếp tuyến của mặt cầu \(\left( S \right)\) nên \(MA \bot OA\) hay tam giác \(MAO\) vuông tại \(A\). Suy ra \(OH.OM = O{A^2} = {R^2} = 4\).

Ta có: \(OH = d\left( {O,\left( {ABC} \right)} \right) = \frac{{\left| { - {x_0} - 2{y_0} - {z_0}} \right|}}{{\sqrt {x_0^2 + y_0^2 + z_0^2} }} = \frac{{\left| {{y_0} + 4} \right|}}{{OM}}\) suy ra \(OH.OM = \left| {{y_0} + 4} \right|\).

Do đó \({y_0} = 0\).

Với \({y_0} = 0 \Rightarrow t =  - 1\) suy ra điểm \(M\left( {2;0;2} \right)\).

Kiểm tra lại, với \(M\left( {2;0;2} \right)\) khi đó \(OM = 2\sqrt 2 ,OH = \frac{{\left| {0 + 4} \right|}}{{OM}} = \frac{4}{{2\sqrt 2 }} = \sqrt 2 \).

Phương trình mặt phẳng \(\left( {ABC} \right)\) là: \(2\left( {x - 1} \right) + 2\left( {z - 1} \right) = 0\) hay \(x + z - 2 = 0\).

\( \Rightarrow a = 1;b = 0 \Rightarrow a + b = 1\).

Mặt khác, \(MH = d\left( {M,\left( {ABC} \right)} \right) = \frac{{\left| {2 + 2 - 2} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \sqrt 2 \).

Ta có \(OH + MH = OM\) nên điểm \(H\) nằm giữa hai điểm \(O\) và \(M\) (thỏa mãn).

Vậy có duy nhất điểm \(M\left( {2;0;2} \right)\) thỏa mãn ycbt.

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đơn vị tính của năng lượng liên kết hạt nhân là gì?

Xem đáp án » 01/07/2024 4,729

Câu 2:

Virus nhận ra các tế bào chủ của nó theo nguyên tắc “chìa và khóa” nghĩa là

Xem đáp án » 01/07/2024 1,845

Câu 3:

Trên tập số thực, cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu là \(\frac{1}{2}\), số hạng thứ tư là 32 và số hạng cuối là 2048. Tính tổng \(T\) các số hạng của cấp số nhân đã cho. 

Xem đáp án » 24/10/2024 1,597

Câu 4:

Xung quanh một bờ hồ hình tròn có trồng 20 cây cau cảnh. Người ta dự định chặt bớt 5 cây sao cho không có hai cây nào kề nhau bị chặt. Có (1) ______ cách thực hiện khác nhau.

Xem đáp án » 24/10/2024 1,572

Câu 5:

Phần tư duy đọc hiểu

Hãy điền một cụm từ không quá hai tiếng để hoàn thành câu văn sau:

Trong sự phát triển của đời sống, giới trẻ ngày nay có xu hướng (1) ______ hình thức giải trí sang các hoạt động trực tuyến thay vì đọc sách, báo in như thập niên trước.

Xem đáp án » 13/07/2024 1,537

Câu 6:

Phần tư duy khoa học / giải quyết vấn đề

Hãy hoàn thành nhận định sau đây bằng cách kéo thả các từ vào đúng vị trí

lớn hơn, nhỏ hơn

Gia tốc trọng trường trên bề mặt Trái Đất _______  gia tốc trọng trường trên bề mặt Mặt Trăng.

Gia tốc trọng trường trên bề mặt Trái Đất  _______  gia tốc trọng trường trên bề mặt Sao Mộc.

Xem đáp án » 13/07/2024 1,255

Câu 7:

Phát biểu sau đây đúng hay sai?

Theo thí nghiệm 1, phân lập B có số lượng vi khuẩn phát triển lớn nhất khi được cung cấp nguồn carbon là galactose.

Xem đáp án » 01/07/2024 1,105
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay