Cho đường thẳng \(\left( d \right):\,\,y = 2x + m\) và parabol \(\left( P \right):\,\,y = {x^2}\,,\) số nguyên \(m\) nhỏ nhất để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt là
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: A
Hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là nghiệm của phương trình
\({x^2} = 2x + m\) hay \({x^2} - 2x + m = 0\,\,\,\left( 1 \right).\)
Ta có: \(\Delta ' = 1 + m\).
Để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt thì phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt.
Suy ra \(\Delta ' > 0\) hay \(1 + m > 0\) hay \(m > - 1.\)
Mà \(m\) là số nguyên nhỏ nhất nên \(m = 0.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\left( {0;0} \right).\)
Lời giải
Đáp án đúng là: B
Hai điểm \(\left( {x;y} \right)\) và \(\left( { - x;y} \right)\) đối xứng nhau qua trục tung \(Oy.\)
Câu 2
A. \(m = 1.\)
B. \(m = 5.\)
C. \(m = 2.\)
D. \(m = 3.\)
Lời giải
Đáp án đúng là: B
Điểm có hoành độ bằng \(1\) là một điểm chung của parabol \(y = 2{x^2}\) và đường thẳng \(y = \left( {m - 1} \right)x - 2\) thì có tung độ \(y = {2.1^2} = 2.\)
Suy ra \(\left( {1;2} \right)\) là điểm chung của parabol và đường thẳng.
Vì \(\left( {1;2} \right)\) thuộc đường thẳng \(y = \left( {m - 1} \right)x - 2\) nên ta có \(2 = \left( {m - 1} \right).1 - 2\) hay \(m = 5.\)
Vậy \(m = 5\) là giá trị cần tìm.
Câu 3
A. \(m = - 1.\)
B. \(m = 1.\)
C. \(m = 0.\)
D. \(m = 2.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\left( {\sqrt 3 ;\, - 6} \right);\,\,\left( { - \sqrt 3 ;\, - 6} \right).\)
B. \(\left( { - 6;\,\sqrt 3 } \right);\,\,\left( { - 6;\, - \sqrt 3 } \right).\)
C. \(\left( {\sqrt 3 ;\, - 6} \right).\)
D. \(\left( { - 72; - 6} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(y = - x + 2.\)
B. \(y = x + 2.\)
C. \(y = - x - 2.\)
D. \(y = x - 2.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left( { - 4;\,\, - 4} \right);\,\,\left( { - 2;\,\, - 1} \right);\,\,\left( {0;\,\,0} \right);\,\,\left( {2;\,\, - 1} \right);\,\,\left( {4;\,\, - 4} \right).\)
B. \(\left( { - 4;\,\,4} \right);\,\,\left( { - 2;\,\, - 1} \right);\,\,\left( {0;\,\,0} \right);\,\,\left( {2;\,\, - 1} \right);\,\,\left( {4;\,\, - 4} \right).\)
C. \(\left( { - 4;\,\, - 4} \right);\,\,\left( { - 2;\,\,1} \right);\,\,\left( {0;\,\,0} \right);\,\,\left( {2;\,\, - 1} \right);\,\,\left( {4;\,\, - 4} \right).\)
D. \(\left( { - 4;\,\, - 4} \right);\,\,\left( {2;\,\, - 1} \right);\,\,\left( {0;\,\,0} \right);\,\,\left( {2;\,\,1} \right);\,\,\left( {4;\,\, - 4} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(y = 4{x^2}.\)
B. \[y = \frac{1}{2}{x^2}.\]
C. \(y = \frac{1}{4}{x^2}.\)
D. \(y = 2{x^2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.