Câu hỏi:

30/10/2024 302

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau Trên mặt phẳng tọa độ \(Oxy\), cho elip có phương trình \(\left( E \right):\frac{{{x^2}}}{4} + {y^2} = 1\) và điểm \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) thuộc \(\left( E \right)\). Tiếp tuyến \(d\) của \(\left( E \right)\) tại \(A\) có hệ số góc là _______. Diện tích hình phẳng \(\left( H \right)\) giới hạn bởi ba đường: elip, đường thẳng \(d\) và trục \(Ox\) bằng _______ - _______π. (ảnh 1)

Trên mặt phẳng tọa độ \(Oxy\), cho elip có phương trình \(\left( E \right):\frac{{{x^2}}}{4} + {y^2} = 1\) và điểm \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) thuộc \(\left( E \right)\).

Tiếp tuyến \(d\) của \(\left( E \right)\) tại \(A\) có hệ số góc là _______.

Diện tích hình phẳng \(\left( H \right)\) giới hạn bởi ba đường: elip, đường thẳng \(d\) và trục \(Ox\) bằng _______ - _______π.

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

Trên mặt phẳng tọa độ \(Oxy\), cho elip có phương trình \(\left( E \right):\frac{{{x^2}}}{4} + {y^2} = 1\) và điểm \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) thuộc \(\left( E \right)\).

Tiếp tuyến \(d\) của \(\left( E \right)\) tại \(A\) có hệ số góc là \(\frac{{\sqrt 3 }}{6}\).

Diện tích hình phẳng \(\left( H \right)\) giới hạn bởi ba đường: elip, đường thẳng \(d\) và trục \(Ox\) bằng \(\sqrt 3 \) - \(\frac{1}{3}\)π.

Giải thích

Phương trình nửa trên của elip \(\left( E \right)\) là \(y = \sqrt {1 - \frac{{{x^2}}}{4}} \) suy ra \(y' = \frac{{ - x}}{{4\sqrt {1 - \frac{{{x^2}}}{4}} }}\).

Phương trình tiếp tuyến với \(\left( E \right)\) tại \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) là

\(y = y'\left( 1 \right)\left( {x - 1} \right) + y\left( 1 \right) = \frac{{ - \sqrt 3 }}{6}\left( {x - 1} \right) + \frac{{\sqrt 3 }}{2}\) hay \(y = \frac{{ - \sqrt 3 }}{6}x + \frac{{2\sqrt 3 }}{3}\).

Đường thẳng \(d\) cắt trục hoành tại \(B\left( {4;0} \right)\). Hình phẳng \(\left( H \right)\) có ba đỉnh \(A,B\) và \(C\left( {2;0} \right)\).

Kẻ \(AK\) vuông góc với trục hoành, khi đó diện tích của hình \(\left( H \right)\) là \({S_{\left( H \right)}} = {S_{AKB}} - {S_1}\) (\({S_1}\) là diện tích giới hạn bởi \(AK\), trục \(Ox\) và \(\left( E \right)\)).

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau Trên mặt phẳng tọa độ \(Oxy\), cho elip có phương trình \(\left( E \right):\frac{{{x^2}}}{4} + {y^2} = 1\) và điểm \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) thuộc \(\left( E \right)\). Tiếp tuyến \(d\) của \(\left( E \right)\) tại \(A\) có hệ số góc là _______. Diện tích hình phẳng \(\left( H \right)\) giới hạn bởi ba đường: elip, đường thẳng \(d\) và trục \(Ox\) bằng _______ - _______π. (ảnh 2)

Ta có: \(AK = \frac{{\sqrt 3 }}{2},KB = 3\) nên \({S_{AKB}} = \frac{1}{2}AK.KB = \frac{{3\sqrt 3 }}{4}\).

Những điểm thuộc hình \(\left( H \right)\) có tung độ \(y \ge 0\) nên từ phương trình \(\left( E \right)\) suy ra \(y = \frac{1}{2}\sqrt {4 - {x^2}} \). Do đó

Đặt \(x = 2{\rm{sin}}t\), ta tính được \({S_1} = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {2{\rm{co}}{{\rm{s}}^2}t{\rm{\;d}}t = \frac{\pi }{3} - \frac{{\sqrt 3 }}{4}} \).

Vậy \({S_{\left( H \right)}} = {S_{AKB}} - {S_1} = \sqrt 3  - \frac{\pi }{3}\).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Màu sắc lông của mèo Xiêm thường sẫm màu hơn ở 

Xem đáp án » 02/07/2024 1,531

Câu 2:

Phần tư duy đọc hiểu

Xác định nội dung chính của bài viết. 

Xem đáp án » 02/07/2024 1,200

Câu 3:

Trong công nghệ “tàu đệm từ” EDS, các nam châm trên tàu được đặt ở 

Xem đáp án » 02/07/2024 1,076

Câu 4:

Phát biểu sau đúng hay sai?

Ethylene có công thức cấu tạo: H−C≡C−H. Trong phân tử ethylene có một liên kết ba giữa hai nguyên tử carbon.

Xem đáp án » 02/07/2024 950

Câu 5:

Phần tư duy khoa học / giải quyết vấn đề

Phát biểu sau đây đúng hay sai? 

Lực tương tác giữa proton và electron được gọi là lực hút tĩnh điện.

Xem đáp án » 02/07/2024 909

Câu 6:

Theo tác giả, những người tàn phế và quan chức tại vùng sơn địa đều nhận được đãi ngộ là gì?

Xem đáp án » 02/07/2024 886

Câu 7:

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 1}\\{{u_{n + 1}} = \frac{{{u_n} + 8}}{5}}\end{array}} \right.\) và dãy số \(\left( {{v_n}} \right)\) xác định bởi \({v_n} = {u_n} - 2\). Biết \(\left( {{v_n}} \right)\) là một cấp số nhân có công bội \(q\). Khi đó, công bội của cấp số nhân \(\left( {{v_n}} \right)\) là

Xem đáp án » 30/10/2024 782

Bình luận


Bình luận