Câu hỏi:
30/10/2024 629Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau
Trên mặt phẳng tọa độ \(Oxy\), cho elip có phương trình \(\left( E \right):\frac{{{x^2}}}{4} + {y^2} = 1\) và điểm \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) thuộc \(\left( E \right)\).
Tiếp tuyến \(d\) của \(\left( E \right)\) tại \(A\) có hệ số góc là _______.
Diện tích hình phẳng \(\left( H \right)\) giới hạn bởi ba đường: elip, đường thẳng \(d\) và trục \(Ox\) bằng _______ - _______π.
Quảng cáo
Trả lời:
Đáp án
Trên mặt phẳng tọa độ \(Oxy\), cho elip có phương trình \(\left( E \right):\frac{{{x^2}}}{4} + {y^2} = 1\) và điểm \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) thuộc \(\left( E \right)\).
Tiếp tuyến \(d\) của \(\left( E \right)\) tại \(A\) có hệ số góc là \(\frac{{\sqrt 3 }}{6}\).
Diện tích hình phẳng \(\left( H \right)\) giới hạn bởi ba đường: elip, đường thẳng \(d\) và trục \(Ox\) bằng \(\sqrt 3 \) - \(\frac{1}{3}\)π.
Giải thích
Phương trình nửa trên của elip \(\left( E \right)\) là \(y = \sqrt {1 - \frac{{{x^2}}}{4}} \) suy ra \(y' = \frac{{ - x}}{{4\sqrt {1 - \frac{{{x^2}}}{4}} }}\).
Phương trình tiếp tuyến với \(\left( E \right)\) tại \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) là
\(y = y'\left( 1 \right)\left( {x - 1} \right) + y\left( 1 \right) = \frac{{ - \sqrt 3 }}{6}\left( {x - 1} \right) + \frac{{\sqrt 3 }}{2}\) hay \(y = \frac{{ - \sqrt 3 }}{6}x + \frac{{2\sqrt 3 }}{3}\).
Đường thẳng \(d\) cắt trục hoành tại \(B\left( {4;0} \right)\). Hình phẳng \(\left( H \right)\) có ba đỉnh \(A,B\) và \(C\left( {2;0} \right)\).
Kẻ \(AK\) vuông góc với trục hoành, khi đó diện tích của hình \(\left( H \right)\) là \({S_{\left( H \right)}} = {S_{AKB}} - {S_1}\) (\({S_1}\) là diện tích giới hạn bởi \(AK\), trục \(Ox\) và \(\left( E \right)\)).
Ta có: \(AK = \frac{{\sqrt 3 }}{2},KB = 3\) nên \({S_{AKB}} = \frac{1}{2}AK.KB = \frac{{3\sqrt 3 }}{4}\).
Những điểm thuộc hình \(\left( H \right)\) có tung độ \(y \ge 0\) nên từ phương trình \(\left( E \right)\) suy ra \(y = \frac{1}{2}\sqrt {4 - {x^2}} \). Do đó
Đặt \(x = 2{\rm{sin}}t\), ta tính được \({S_1} = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {2{\rm{co}}{{\rm{s}}^2}t{\rm{\;d}}t = \frac{\pi }{3} - \frac{{\sqrt 3 }}{4}} \).
Vậy \({S_{\left( H \right)}} = {S_{AKB}} - {S_1} = \sqrt 3 - \frac{\pi }{3}\).
Đã bán 851
Đã bán 1,4k
Đã bán 902
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một lớp học trong một trường đại học có 60 sinh viên, trong đó có 40 sinh viên học tiếng Anh, 30 sinh viên học tiếng Pháp và 20 sinh viên học cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên 2 sinh viên của lớp học này. Tính xác suất để 2 sinh viên được chọn không học ngoại ngữ. Biết rằng trường này chỉ dạy hai loại ngoại ngữ là tiếng Anh và tiếng Pháp.
Câu 2:
Phát biểu sau đúng hay sai?
Ethylene có công thức cấu tạo: H−C≡C−H. Trong phân tử ethylene có một liên kết ba giữa hai nguyên tử carbon.
Câu 4:
Một bà mẹ Việt Nam anh hùng được hưởng số tiền là 4 triệu đồng một tháng (chuyển vào tài khoản của mẹ ở ngân hàng vào đầu tháng). Từ tháng 1 năm 2023 mẹ không đi rút tiền mà để lại ngân hàng và được tính lãi suất 1% / tháng. Đến đầu tháng 12 năm 2023 mẹ rút toàn bộ số tiền (gồm số tiền của tháng 12 và số tiền đã gửi từ tháng 1). (Các kết quả làm tròn đến hàng nghìn).
Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu |
Đúng |
Sai |
Mẹ Việt Nam anh hùng nhận được tất cả là 50 triệu 730 nghìn đồng. |
||
Đến cuối tháng 11, mẹ Việt Nam anh hùng nhận được 46 triệu 370 nghìn đồng. |
||
Số tiền lãi mẹ Việt Nam anh hùng nhận được là 2 triệu 730 nghìn đồng. |
Câu 5:
Phần tư duy khoa học / giải quyết vấn đề
Phát biểu sau đây đúng hay sai?
Lực tương tác giữa proton và electron được gọi là lực hút tĩnh điện.
Câu 6:
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận