Câu hỏi:
30/10/2024 656Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau

Trên mặt phẳng tọa độ \(Oxy\), cho elip có phương trình \(\left( E \right):\frac{{{x^2}}}{4} + {y^2} = 1\) và điểm \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) thuộc \(\left( E \right)\).
Tiếp tuyến \(d\) của \(\left( E \right)\) tại \(A\) có hệ số góc là _______.
Diện tích hình phẳng \(\left( H \right)\) giới hạn bởi ba đường: elip, đường thẳng \(d\) và trục \(Ox\) bằng _______ - _______π.
Quảng cáo
Trả lời:
Đáp án
Trên mặt phẳng tọa độ \(Oxy\), cho elip có phương trình \(\left( E \right):\frac{{{x^2}}}{4} + {y^2} = 1\) và điểm \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) thuộc \(\left( E \right)\).
Tiếp tuyến \(d\) của \(\left( E \right)\) tại \(A\) có hệ số góc là \(\frac{{\sqrt 3 }}{6}\).
Diện tích hình phẳng \(\left( H \right)\) giới hạn bởi ba đường: elip, đường thẳng \(d\) và trục \(Ox\) bằng \(\sqrt 3 \) - \(\frac{1}{3}\)π.
Giải thích
Phương trình nửa trên của elip \(\left( E \right)\) là \(y = \sqrt {1 - \frac{{{x^2}}}{4}} \) suy ra \(y' = \frac{{ - x}}{{4\sqrt {1 - \frac{{{x^2}}}{4}} }}\).
Phương trình tiếp tuyến với \(\left( E \right)\) tại \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) là
\(y = y'\left( 1 \right)\left( {x - 1} \right) + y\left( 1 \right) = \frac{{ - \sqrt 3 }}{6}\left( {x - 1} \right) + \frac{{\sqrt 3 }}{2}\) hay \(y = \frac{{ - \sqrt 3 }}{6}x + \frac{{2\sqrt 3 }}{3}\).
Đường thẳng \(d\) cắt trục hoành tại \(B\left( {4;0} \right)\). Hình phẳng \(\left( H \right)\) có ba đỉnh \(A,B\) và \(C\left( {2;0} \right)\).
Kẻ \(AK\) vuông góc với trục hoành, khi đó diện tích của hình \(\left( H \right)\) là \({S_{\left( H \right)}} = {S_{AKB}} - {S_1}\) (\({S_1}\) là diện tích giới hạn bởi \(AK\), trục \(Ox\) và \(\left( E \right)\)).

Ta có: \(AK = \frac{{\sqrt 3 }}{2},KB = 3\) nên \({S_{AKB}} = \frac{1}{2}AK.KB = \frac{{3\sqrt 3 }}{4}\).
Những điểm thuộc hình \(\left( H \right)\) có tung độ \(y \ge 0\) nên từ phương trình \(\left( E \right)\) suy ra \(y = \frac{1}{2}\sqrt {4 - {x^2}} \). Do đó
Đặt \(x = 2{\rm{sin}}t\), ta tính được \({S_1} = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {2{\rm{co}}{{\rm{s}}^2}t{\rm{\;d}}t = \frac{\pi }{3} - \frac{{\sqrt 3 }}{4}} \).
Vậy \({S_{\left( H \right)}} = {S_{AKB}} - {S_1} = \sqrt 3 - \frac{\pi }{3}\).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có sơ đồ Ven như hình vẽ.
Số lượng sinh viên học ít nhất một môn ngoại ngữ là: \(40 + 30 - 20 = 50\) (học sinh).
Số lượng sinh viên không học ngoại ngữ là: \(60 - 50 = 10\) (học sinh).
Ta xét phép thử: Chọn 2 sinh viên bất kỳ trong số 60 sinh viên của lớp học.
\( \Rightarrow \) Số phần tử của không gian mẫu là: \(n\left( {\rm{\Omega }} \right) = C_{60}^2\).
Xét biến cố \(A\) : "Chọn ra 2 sinh viên không học ngoại ngữ".
\( \Rightarrow \) Số phần tử của biến cố \(A\) là: \(n\left( A \right) = C_{10}^2\).
Vậy xác suất để chọn được 2 sinh viên không học ngoại ngữ là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{C_{10}^2}}{{C_{60}^2}} = \frac{3}{{118}}\).
Chọn B
Lời giải
Ethylene có công thức cấu tạo:

Trong phân tử ethylene có một liên kết đôi giữa hai nguyên tử carbon.
Chọn B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.