Câu hỏi:

07/11/2024 6,442

Hưởng ứng phong trào “Vì biển đảo Trường Sa”, một đội tàu dự định chở \(280\) tấn hàng ra đảo. Nhưng khi chuẩn bị khởi hành thì số hàng hóa đã tăng thêm \(6\) tấn so với dự định. Vì vậy đội tài phải bổ sung thêm \(1\) tàu và mỗi tàu chở ít hơn dự định \(2\) tấn hàng. Hỏi khi dự định, đội tài có bao nhiêu chiếc tàu, biết các tàu chở số tấn hàng bằng nhau?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Gọi số tàu dự định của đội là \(x\) (chiếc) \(\left( {x \in {\mathbb{N}^*},\,x < 140} \right).\)

Số tàu tham gia vận chuyển là \(x + 1\) (chiếc)

Số tấn hàng trên mỗi chiếc theo dự định: \(\frac{{280}}{x}\) (tấn)

Số tấn hàng trên mỗi chiếc thực tế: \(\frac{{286}}{{x + 1}}\) (tấn)

Theo đề bài ta có phương trình \(\frac{{280}}{x} - \frac{{286}}{{x + 1}} = 2\)

\(280\left( {x + 1} \right) - 286x = 2x\left( {x + 1} \right)\)

\({x^2} + 4x - 140 = 0\)

\(x = 10\)(thỏa mãn) hoặc \(x = - 14\) (loại)

Vậy đội tàu lúc đầu là \(10\) chiếc.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Giá trị của \(m\) để phương trình \({x^2} + 2mx + 4 = 0\) có hai nghiệm \({x_1},\,{x_2}\) thỏa mãn \(\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} = 3\) là

Lời giải

Đáp án đúng là: D

Điều kiện để phương trình có hai nghiệm \({x_1},\,{x_2}\) là \(\Delta ' \ge 0\) hay \({m^2} - 4 \ge 0\)

Khi đó \({m^2} \ge 4\) nên \(\left| m \right| \ge 2\,\,\,\left( 1 \right).\)

Ta có \(\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} = 3\)

\(x_1^2 + x_2^2 = 3{x_1}{x_2}\)

\({\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 3{x_1}{x_2}\)

\({\left( {{x_1} + {x_2}} \right)^2} = 5{x_1}{x_2}\,\,\,\left( 2 \right)\)

Theo định lí Viète ta có \({x_1} + {x_2} = - 2m,\,\,{x_1}{x_2} = 4.\)

Khi đó \(\left( 2 \right)\) trở thành \(4{m^2} = 20\) hay \(m = \pm \sqrt 5 \) (thỏa mãn \(\left( 1 \right)\)).

Vậy \(m = \pm \sqrt 5 \) là giá trị cần tìm.

Câu 2

Nếu phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\)có hai nghiệm \({x_1};\,{x_2}\) thì

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Định lí Viète: Nếu \({x_1};\,{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\) thì

\(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tìm nghiệm của phương trình \(2{x^2} - 2\sqrt 5 x + 1 = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

II. Thông hiểu

Cho hàm số bậc hai \(y = 4{x^2}.\) Giá trị của \(y\) khi \(x = - 2\) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

I. Nhận biết

Câu 1.  Cho hai đường parabol trong mặt phẳng tọa độ \[{\rm{Ox}}y.\] Khẳng định nào sau đây là đúng?

Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay