Câu hỏi:

10/11/2024 143

Để quảng bá cho sản phẩm \(M\), một công ty dự định đăng kí gói quảng cáo trên truyền hình. Nghiên cứu của công ty cho thấy: Nếu sau \(n\) lần quảng cáo được phát thì tỉ lệ người xem quảng cáo đó mua sản phẩm \(M\) được tính theo công thức: \(P\left( n \right) = \frac{1}{{1 + 50.{e^{ - 0,016n}}}}\).

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau
Để quảng bá cho sản phẩm \(M\), một công ty dự định đăng kí gói quảng cáo trên truyền hình. Nghiên cứu của công ty cho thấy: Nếu sau (ảnh 1)

Cần ít nhất ______ lần quảng cáo để tỉ lệ người xem mua sản phẩm \(M\) đạt trên 30 .

Biết rằng công ty chỉ có ngân sách đủ để phát tối đa 300 lần quảng cáo, khi phát đến lần quảng cáo cuối cùng thì tỉ lệ người xem mua sản phẩm \(M\) đạt ______ _ % (kết quả làm tròn đến hàng đơn vị).

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

Cần ít nhất 192 lần quảng cáo để tỉ lệ người xem mua sản phẩm \(M\) đạt trên 30 .

Biết rằng công ty chỉ có ngân sách đủ để phát tối đa 300 lần quảng cáo, khi phát đến lần quảng cáo cuối cùng thì tỉ lệ người xem mua sản phẩm \(M\) đạt 71 _ % (kết quả làm tròn đến hàng đơn vị).

Giải thích

+) Để số người xem mua sản phẩm \(M\) đạt trên 30 thì

    \(P\left( n \right) > 0,3 \Leftrightarrow \frac{1}{{1 + 50.{e^{ - 0,016n}}}} > 0,3 \Leftrightarrow 1 + 50.{e^{ - 0,016n}} < \frac{1}{{0,3}} \Leftrightarrow {e^{ - 0,016n}} < \frac{7}{{150}} \Leftrightarrow {e^{0,016n}} > \frac{{150}}{7}\)

\( \Leftrightarrow 0,016n > {\rm{ln}}\left( {\frac{{150}}{7}} \right) \Leftrightarrow n > 191,55\).

Vậy cần ít nhất 192 lần quảng cáo để tỉ lệ người xem mua sản phẩm \(M\) đạt trên 30.

+) Khi phát đến lần quảng cáo cuối cùng thì tỉ lệ người xem mua sản phẩm \(M\) đạt

\(P\left( {300} \right) = \frac{1}{{1 + 50.{e^{ - 0,016.300}}}} \approx 0,71 = 71\).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị \(y = f'\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = f\left( {x - m} \right) - \frac{1}{2}{(x - m - 1)^2} + 2023\), với \(m\) là tham số thực. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = g\left( x \right)\) đồng biến trên khoảng \(\left( {5;6} \right)\). Tổng tất cả các phần tử trong \(S\) bằng (1) ________.

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị \(y = f'\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = f\left( {x - m} \right) - \frac{1}{2}{(x - m - 1)^2} + 2023\), với \(m\) là tham số thực. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = g\left( x \right)\) đồng biến trên khoảng \(\left( {5;6} \right)\). Tổng tất cả các phần tử trong \(S\) bằng (1) ________. (ảnh 1)

Xem đáp án » 12/11/2024 4,024

Câu 2:

Một cửa hàng điện máy có doanh số bán lẻ tivi mỗi năm là 2500 chiếc. Chi phí lưu kho của mỗi chiếc tivi là 200 nghìn đồng một năm. Để đặt hàng nhà sản xuất, mỗi lần cửa hàng cần đặt cọc cố định là 10 triệu đồng và sau khi nhập hàng thì cần trả thêm 3 triệu đồng mỗi chiếc tivi. Biết rằng số lượng tivi trung bình gửi trong kho bằng một nửa số tivi của mỗi lần đặt hàng. Cửa hàng nên đặt hàng nhà sản xuất (1) _______ lần mỗi năm và mỗi lần đặt (2) ________ chiếc tivi để chi phí hàng tồn kho là thấp nhất.

Xem đáp án » 12/11/2024 2,411

Câu 3:

Phát biểu sau đúng hay sai?

Khi tách hai chất lỏng tan vào nhau bằng phương pháp chưng cất, tính chất vật lí được quan tâm là tính tan của các chất trong dung môi.

Xem đáp án » 04/07/2024 1,269

Câu 4:

Trong mặt phẳng cho đa giác đều (H) có 20 cạnh. Xét tam giác có đúng 3 đỉnh được lấy từ các đỉnh của (H).

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau
Trong mặt phẳng cho đa giác đều (H) có 20 cạnh. Xét tam giác có đúng 3 đỉnh được lấy từ các đỉnh của (H). Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau (ảnh 1)

Có _______ tam giác có đúng 3 đỉnh được lấy từ các đỉnh của (H).

Có _______ tam giác có đúng hai cạnh là cạnh của (H).

Có _______ tam giác có đúng một cạnh là cạnh của (H).

Có _______ tam giác không có cạnh nào là cạnh của (H).

Xem đáp án » 12/11/2024 1,149

Câu 5:

Diện tích mặt tròn xoay tạo thành khi quay đường cong \(f\left( x \right)\) quanh trục hoành giới hạn giữa hai mặt phẳng \(x = a,x = b\) được tính bởi công thức \(S = 2\pi \int\limits_a^b {\left| {f\left( x \right)} \right|\sqrt {1 + {{\left[ {f'\left( x \right)} \right]}^2}} {\rm{\;d}}x} \).

Một bình hoa có dạng hình cầu khuyết như hình vẽ. Biết đường kính của bình hoa là \(20{\rm{\;cm}}\) và đường kính đáy/miệng của bình hoa là \(12{\rm{\;cm}}\). Diện tích tráng men mặt ngoài (kể cả đáy) của bình hoa bằng (1) _________ \(c{m^2}\). (Kết quả làm tròn đến chữ số thập phân thứ hai)

Diện tích mặt tròn xoay tạo thành khi quay đường cong \(f\left( x \right)\) quanh trục hoành giới hạn giữa hai mặt phẳng \(x = a,x = b\) được tính bởi công thức \(S = 2\pi \int\limits_a^b {\left| {f\left( x \right)} \right|\sqrt {1 + {{\left[ {f'\left( x \right)} \right]}^2}} {\rm{\;d}}x} \). Một bình hoa có dạng hình cầu khuyết như hình vẽ. Biết đường kính của bình hoa là \(20{\rm{\;cm}}\) và đường kính đáy/miệng của bình hoa là \(12{\rm{\;cm}}\). Diện tích tráng men mặt ngoài (kể cả đáy) của bình hoa bằng (1) _________ \(c{m^2}\). (Kết quả làm tròn đến chữ số thập phân thứ hai) (ảnh 1)

Xem đáp án » 12/11/2024 1,027

Câu 6:

Phát biểu sau đây đúng hay sai?

Hai thí nghiệm trên, vi khuẩn đều được nuôi cấy trong môi trường nuôi cấy liên tục.

Xem đáp án » 05/07/2024 606

Câu 7:

Phần tư duy khoa học / giả quyết vấn đề

Theo Giả thuyết Lỗ thông thủy nhiệt, các phân tử hữu cơ ban đầu được hình thành ở 

Xem đáp án » 04/07/2024 599

Bình luận


Bình luận