Câu hỏi:
12/11/2024 47Cho một cái hộp có nắp có dạng hình trụ có bán kính đáy là \(10{\rm{\;cm}}\) và khoảng cách giữa hai đáy là \(56{\rm{\;cm}}\). Thả các quả bóng có dạng hình cầu vào trong hộp sao cho các quả bóng tiếp xúc với thành hộp theo một đường tròn và tiếp xúc với nhau. Gọi \(\left( P \right)\) là mặt phẳng song song với trục và cắt hình trụ theo thiết diện \(ABCD\).
Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu |
ĐÚNG |
SAI |
Thể tích của hộp là \(5600\pi {\rm{c}}{{\rm{m}}^3}\). |
||
Hộp đựng được tối đa 4 quả bóng. |
||
Để diện tích \(ABCD\) bằng \(80{\rm{\;c}}{{\rm{m}}^2}\) thì khoảng cách từ trục đến mặt phẳng \(\left( P \right)\) là \(\frac{{465}}{{49}}{\rm{\;cm}}\). |
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án
Phát biểu |
ĐÚNG |
SAI |
Thể tích của hộp là \(5600\pi {\rm{c}}{{\rm{m}}^3}\). |
X | |
Hộp đựng được tối đa 4 quả bóng. |
X | |
Để diện tích \(ABCD\) bằng \(80{\rm{\;c}}{{\rm{m}}^2}\) thì khoảng cách từ trục đến mặt phẳng \(\left( P \right)\) là \(\frac{{465}}{{49}}{\rm{\;cm}}\). |
X |
Giải thích
Thể tích của hộp là \(V = \pi {R^2}h = \pi \cdot {10^2}.56 = 5600\pi \left( {{\rm{c}}{{\rm{m}}^3}} \right)\).
Tổng chiều cao của \(n\) quả bóng thả trong hộp là: \(2nR = 2n.10 = 20n\).
Ta có: \(20n \le 56 \Leftrightarrow n \le 2,8\).
Vậy hộp chỉ đựng được tối đa 2 quả bóng.
Vì \(\left( P \right)//OO'\) nên \(d\left( {OO';\left( P \right)} \right) = d\left( {O;\left( P \right)} \right) = OH\) (với \(H\) là trung điểm cạnh \(AB\))
Ta có: \({S_{ABCD}} = 80 \Leftrightarrow AB.AD = 80 \Leftrightarrow AB = \frac{{10}}{7}\left( {AD = h = 56} \right)\)
\( \Leftrightarrow 2BH = \frac{{10}}{7} \Leftrightarrow \sqrt {{R^2} - O{H^2}} = \frac{5}{7} \Leftrightarrow OH = \frac{{5\sqrt {149} }}{7}\left( {{\rm{cm}}} \right)\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị \(y = f'\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = f\left( {x - m} \right) - \frac{1}{2}{(x - m - 1)^2} + 2023\), với \(m\) là tham số thực. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = g\left( x \right)\) đồng biến trên khoảng \(\left( {5;6} \right)\). Tổng tất cả các phần tử trong \(S\) bằng (1) ________.
Câu 2:
Một cửa hàng điện máy có doanh số bán lẻ tivi mỗi năm là 2500 chiếc. Chi phí lưu kho của mỗi chiếc tivi là 200 nghìn đồng một năm. Để đặt hàng nhà sản xuất, mỗi lần cửa hàng cần đặt cọc cố định là 10 triệu đồng và sau khi nhập hàng thì cần trả thêm 3 triệu đồng mỗi chiếc tivi. Biết rằng số lượng tivi trung bình gửi trong kho bằng một nửa số tivi của mỗi lần đặt hàng. Cửa hàng nên đặt hàng nhà sản xuất (1) _______ lần mỗi năm và mỗi lần đặt (2) ________ chiếc tivi để chi phí hàng tồn kho là thấp nhất.
Câu 3:
Phát biểu sau đúng hay sai?
Khi tách hai chất lỏng tan vào nhau bằng phương pháp chưng cất, tính chất vật lí được quan tâm là tính tan của các chất trong dung môi.
Câu 4:
Phát biểu sau đây đúng hay sai?
Hai thí nghiệm trên, vi khuẩn đều được nuôi cấy trong môi trường nuôi cấy liên tục.
Câu 5:
Câu 6:
Phần tư duy khoa học / giả quyết vấn đề
Câu 7:
Theo bài viết, giải pháp đơn giản nhất để giảm gánh nặng nhiệt cho cư dân đô thị hiện nay là gì?
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá tư duy tốc chiến Đại học Bách khoa năm 2023-2024 có đáp án (Đề 1)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
ĐGTD ĐH Bách khoa - Sử dụng ngôn ngữ Tiếng Anh - Thì tương lai hoàn thành
ĐGTD ĐH Bách khoa - Sử dụng ngôn ngữ Tiếng Anh - Thì hiện tại đơn
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Top 5 đề thi Đánh giá năng lực trường ĐH Bách khoa Hà Nội năm 2023 - 2024 có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 7)
về câu hỏi!