Câu hỏi:

12/11/2024 1,191

Một xưởng sản xuất thực phẩm gồm 4 kĩ sư chế biến thực phẩm, 3 kĩ thuật viên và 13 công nhân. Xưởng cần chia thành 3 ca sản xuất theo thời gian liên tiếp nhau sao cho ca I có 6 người và 2 ca còn lại mỗi ca có 7 người.

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau
Một xưởng sản xuất thực phẩm gồm 4 kĩ sư chế biến thực phẩm, 3 kĩ thuật viên và 13 công nhân. Xưởng cần chia thành 3 ca sản xuất theo thời gian liên tiếp nhau sao cho ca I có 6 người và 2 ca còn lại mỗi ca có 7 người. (ảnh 1)

Số cách xếp để ca I có 1 kĩ thuật viên, 2 kĩ sư và 3 công nhân là _______.

Số cách xếp để mỗi ca có 1 kĩ thuật viên và ít nhất một kĩ sư chế biến thực phẩm là _______.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

Số cách xếp để ca I có 1 kĩ thuật viên, 2 kĩ sư và 3 công nhân là 17667936.

Số cách xếp để mỗi ca có 1 kĩ thuật viên và ít nhất một kĩ sư chế biến thực phẩm là 18162144.

Giải thích

Để ca I có 1 kĩ thuật viên, 2 kĩ sư và 3 công nhân, ta làm theo các bước:

+) Chọn 6 người ca I trong đó có 1 kĩ thuật viên, 2 kĩ sư và 3 công nhân có \(C_3^1\).\(C_4^2\).\(C_{13}^3\) cách.

+) Chọn 7 người ca II có \(C_{14}^7\) cách.

+) Chọn 7 người ca III có \(C_7^7\) cách.

Vậy có \(C_3^1\).\(C_4^2\).\(C_{13}^3\).\(C_{14}^7.C_7^7 = 17667936\) cách.

- Để mỗi ca có 1 kĩ thuật viên và ít nhất một kĩ sư chế biến thực phẩm, ta có các trường hợp:

TH1.

Ca I có 1 kĩ thuật viên, 2 kĩ sư và 3 công nhân.

Ca II có 1 kĩ thuật viên, 1 kĩ sư và 5 công nhân.

Ca III có 1 kĩ thuật viên, 1 kĩ sư và 5 công nhân.

Số cách chọn cho trường hợp này là \(\left( {C_3^1.C_4^2.C_{13}^3} \right).\left( {C_2^1.C_2^1.C_{10}^5} \right) \cdot \left( {C_1^1.C_1^1.C_5^5} \right) = 5189184\).

TH2.

Ca I có 1 kĩ thuật viên, 1 kĩ sư và 4 công nhân.

Ca II có 1 kĩ thuật viên, 2 kĩ sư và 4 công nhân.

Ca III có 1 kĩ thuật viên, 1 kĩ sư và 5 công nhân.

Số cách chọn cho trường hợp này là \(\left( {C_3^1.C_4^1.C_{13}^4} \right).\left( {C_2^1.C_3^2.C_9^4} \right).\left( {C_1^1.C_1^1.C_5^5} \right) = 6486480\).

TH3.

Ca I có 1 kĩ thuật viên, 1 kĩ sư và 4 công nhân.

Ca II có 1 kĩ thuật viên, 1 kĩ sư và 5 công nhân.

Ca III có 1 kĩ thuật viên, 2 kĩ sư và 4 công nhân.

Số cách chọn cho trường hợp này là \(\left( {C_3^1.C_4^1.C_{13}^4} \right).\left( {C_2^1.C_3^1.C_9^5} \right).\left( {C_1^1.C_2^2.C_4^4} \right) = 6486480\).

Vậy có \(5189184 + 6486480 + 6486480 = 18162144\) cách.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: “14”

Giải thích

Xét hàm số \(g\left( x \right) = f\left( {x - m} \right) - \frac{1}{2}{(x - m - 1)^2} + 2023\).

\(g'\left( x \right) = f'\left( {x - m} \right) - \left( {x - m - 1} \right)\). Xét phương trình \(g'\left( x \right) = 0{\rm{\;}}\) (1).

Đặt \(x - m = t\), phương trình (1) trở thành \(f'\left( t \right) - \left( {t - 1} \right) = 0 \Leftrightarrow f'\left( t \right) = t - 1{\rm{\;}}\) (2).

Nghiệm của phương trình \(\left( 2 \right)\) là hoành độ giao điểm của hai đồ thị \(y = f'\left( t \right)\) và \(y = t - 1\).

Ta có đồ thị các hàm số \(y = f'\left( t \right)\) và \(y = t - 1\) như sau:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị \(y = f'\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = f\left( {x - m} \right) - \frac{1}{2}{(x - m - 1)^2} + 2023\), với \(m\) là tham số thực. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = g\left( x \right)\) đồng biến trên khoảng \(\left( {5;6} \right)\). Tổng tất cả các phần tử trong \(S\) bằng (1) ________. (ảnh 2)

Căn cứ đồ thị các hàm số thì phương trình \(\left( 2 \right)\) có nghiệm là \(\left[ {\begin{array}{*{20}{c}}{t =  - 1}\\{t = 1}\\{t = 3}\end{array} \Rightarrow \left[ {\begin{array}{*{20}{l}}{x = m - 1}\\{x = m + 1}\\{x = m + 3}\end{array}} \right.} \right.\)

Ta có bảng biến thiên của \(y = g\left( x \right)\) như sau:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị \(y = f'\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = f\left( {x - m} \right) - \frac{1}{2}{(x - m - 1)^2} + 2023\), với \(m\) là tham số thực. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = g\left( x \right)\) đồng biến trên khoảng \(\left( {5;6} \right)\). Tổng tất cả các phần tử trong \(S\) bằng (1) ________. (ảnh 3)

Để hàm số \(y = g\left( x \right)\) đồng biến trên khoảng \(\left( {5;6} \right)\) thì \(\left[ {\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{m - 1 \le 5}\\{m + 1 \ge 6}\end{array}} \right.}\\{m + 3 \le 5}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{5 \le m \le 6}\\{m \le 2}\end{array}} \right.\)

Vì \(m \in \mathbb{N}{\rm{*}} \Rightarrow m \in \left\{ {1;2;5;6} \right\} \Rightarrow S = 14\).

 

Lời giải

Đáp án

Một cửa hàng điện máy có doanh số bán lẻ tivi mỗi năm là 2500 chiếc. Chi phí lưu kho của mỗi chiếc tivi là 200 nghìn đồng một năm. Để đặt hàng nhà sản xuất, mỗi lần cửa hàng cần đặt cọc cố định là 10 triệu đồng và sau khi nhập hàng thì cần trả thêm 3 triệu đồng mỗi chiếc tivi. Biết rằng số lượng tivi trung bình gửi trong kho bằng một nửa số tivi của mỗi lần đặt hàng. Cửa hàng nên đặt hàng nhà sản xuất (1) ___5___ lần mỗi năm và mỗi lần đặt (2) __500__ chiếc tivi để chi phí hàng tồn kho là thấp nhất.

Giải thích

Gọi \(x\) là số tivi mỗi lần đặt hàng \(\left( {x \in \mathbb{N},x \in \left[ {1;2500} \right]} \right)\).

Khi đó, số lượng tivi trung bình gửi trong kho sẽ là \(\frac{x}{2}\). Do đó, chi phí gửi hàng trong kho mỗi năm sẽ là \(0,2.\frac{x}{2} = \frac{x}{{10}}\).

Số lần đặt hàng mỗi năm sẽ là \(\frac{{2500}}{x}\).

Do đó chi phí đặt hàng mỗi năm sẽ là \(\left( {10 + 3x} \right).\frac{{2500}}{x} = \frac{{25000}}{x} + 7500\).

Suy ra, chi phí hàng tồn kho là \(C\left( x \right) = \frac{x}{{10}} + \frac{{25000}}{x} + 7500\).

Bài toán trở thành tìm giá trị nhỏ nhất của \(C\left( x \right)\) với \(x \in \left[ {1;2500} \right]\).

Ta có: \(C'\left( x \right) = \frac{1}{{10}} - \frac{{25000}}{{{x^2}}},C'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 500}\\{x =  - 500\left( L \right)}\end{array}} \right.\)

Bảng biến thiên:

Một cửa hàng điện máy có doanh số bán lẻ tivi mỗi năm là 2500 chiếc. Chi phí lưu kho của mỗi chiếc tivi là 200 nghìn đồng một năm. Để đặt hàng nhà sản xuất, mỗi lần cửa hàng cần đặt cọc cố định là 10 triệu đồng và sau khi nhập hàng thì cần trả thêm 3 triệu đồng mỗi chiếc tivi. Biết rằng số lượng tivi trung bình gửi trong kho bằng một nửa số tivi của mỗi lần đặt hàng. Cửa hàng nên đặt hàng nhà sản xuất (1) _______ lần mỗi năm và mỗi lần đặt (2) ________ chiếc tivi để chi phí hàng tồn kho là thấp nhất. (ảnh 1)

Vậy \(\mathop {{\rm{min}}}\limits_{\left[ {1;2500} \right]} C\left( x \right) = C\left( {500} \right) = 7600\)

Khi đó số lần đặt hàng mỗi năm sẽ là \(\frac{{2500}}{{500}} = 5\) lần.

Vậy để chi phí hàng tồn kho là nhỏ nhất thì cửa hàng cần đặt hàng 5 lần mỗi năm và 500 cái mỗi lần.

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay