Câu hỏi:

12/11/2024 209 Lưu

III. Vận dụng

Cho đường tròn \[\left( {O;R} \right)\] có hai dây \[AB,CD\] vuông góc với nhau tại \[M.\] Giả sử \[AB = 16{\rm{\;cm}},CD = 12{\rm{\;cm}},MC = 2{\rm{\;cm}}.\] Kẻ \[OH \bot AB\] tại \[H,\] \[OK \bot CD\] tại \[K.\] Khi đó diện tích tứ giác \[OHMK\] bằng

A. \[2 + \sqrt {11} {\rm{\;c}}{{\rm{m}}^2}.\]

B. \[4 + 2\sqrt {11} {\rm{\;c}}{{\rm{m}}^2}.\]
C. \[8\sqrt {11} {\rm{\;c}}{{\rm{m}}^2}.\]
D. \[4\sqrt {11} {\rm{\;c}}{{\rm{m}}^2}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Cho đường tròn  ( O ; R )  có hai dây  A B , C D  vuông góc với nhau tại  M .  Giả sử  A B = 16 c m , C D = 12 c m , M C = 2 c m .  Kẻ  O H ⊥ A B  tại  H ,   O K ⊥ C D  tại  K .  Khi đó diện tích tứ giác  O H M K  bằng (ảnh 1)

Tam giác \[OAB\] cân tại \[O\] (do \[OA = OB = R)\] có \[OH\] là đường cao nên \[OH\] cũng là đường trung tuyến của tam giác. Do đó \[H\] là trung điểm \[AB.\]

Vì vậy \[HA = HB = \frac{{AB}}{2} = \frac{{16}}{2} = 8{\rm{\;(cm)}}{\rm{.}}\]

Chứng minh tương tự, ta được \[KC = KD = \frac{{CD}}{2} = \frac{{12}}{2} = 6{\rm{\;(cm)}}{\rm{.}}\]

Ta có \[KC = KM + MC.\] Suy ra \[KM = KC - MC = 6 - 2 = 4{\rm{\;(cm)}}{\rm{.}}\]

Tứ giác \[OHMK\] có: \[\widehat {OKM} = \widehat {KMH} = \widehat {OHM} = 90^\circ \] nên tứ giác \[OHMK\] là hình chữ nhật.

Do đó \[OH = KM = 4{\rm{\;(cm)}}{\rm{.}}\]

Áp dụng định lí Pythagore cho tam giác \[OHB\] vuông tại \[H,\] ta được:

\[O{B^2} = O{H^2} + H{B^2} = {4^2} + {8^2} = 80\]. Suy ra \[R = OB = 4\sqrt 5 {\rm{\;(cm)}}{\rm{.}}\]

Áp dụng định lí Pythagore cho tam giác \[OKD\] vuông tại \[K,\] ta được: \[O{D^2} = O{K^2} + K{D^2}.\]

Suy ra \[O{K^2} = O{D^2} - K{D^2} = {R^2} - K{D^2} = {\left( {4\sqrt 5 } \right)^2} - {6^2} = 44\]

Do đó \[OK = 2\sqrt {11} {\rm{\;(cm)}}{\rm{.}}\]

Vậy diện tích hình chữ nhật \[OHMK\] là: \[S = KM \cdot OK = 4 \cdot 2\sqrt {11} = 8\sqrt {11} {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Do đó ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Cho đường tròn  ( O ; R )  và dây  A B .  Trên cung nhỏ  A B  lấy hai điểm  M , N  sao cho  A M = B N   ( M  nằm trên cung nhỏ  A N ) .  Kết luận nào sau đây đúng? (ảnh 1)

⦁ Xét \[\Delta AOM\] và \[\Delta BON,\] có:

\[OA = OB = R;\] \[OM = ON = R;\] \[AM = BN\]

Do đó \[\Delta AOM = \Delta BON\] (c.c.c)

Suy ra \[\widehat {AOM} = \widehat {BON}\] (hai góc tương ứng).

Vì vậy

Khi đó hay

Vì vậy phương án A đúng.

⦁ Xét \[\Delta AON\] và \[\Delta BOM,\] có:

\[OA = OB = R;\] \[ON = OM = R;\] \[\widehat {AON} = \widehat {BOM}\] (do

Do đó \[\Delta AON = \Delta BOM\] (c.g.c).

Vì vậy phương án C đúng.

⦁ Ta có \[\Delta AON = \Delta BOM\] (chứng minh trên)

Suy ra \[AN = BM\] (hai cạnh tương ứng).

Do đó phương án B đúng.

Vậy cả ba phương án đều đúng, ta chọn phương án D.

Lời giải

Đáp án đúng là: D

Đường tròn tâm \[O\] có đường kính bằng \[2 \cdot 20 = 40{\rm{\;(m)}}.\]

Vì độ dài dây \[AB\] không thể vượt quá độ dài đường kính của đường tròn tâm \[O\] nên \[AB \le 40{\rm{\;(m)}}.\]

Tức là, không có thời điểm nào dây \[AB\] nối vị trí của hai bạn đó có độ dài lớn hơn \[40{\rm{\;m}}.\]

Vì \[41{\rm{\;(m)}} > 40{\rm{\;(m)}}\] nên độ dài dây \[AB\] nối vị trí của hai bạn đó không thể bằng \[41{\rm{\;m}}.\]

Vậy ta chọn phương án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. số đo cung nhỏ.

B. số đo của nửa đường tròn.

C. hiệu giữa \[360^\circ \] và số đo của cung nhỏ (có chung hai mút với cung lớn).

D. tổng giữa \[360^\circ \] và số đo của cung nhỏ (có chung hai mút với cung lớn).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. số đo của góc ở tâm chắn cung đó.

B. số đo của nửa đường tròn.

C. nửa số đo của góc ở tâm chắn cung lớn.

D. hai lần số đo của góc ở tâm chắn cung lớn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP