Câu hỏi:

12/11/2024 225

Diện tích hình vành khuyên nằm giữa hai đường tròn đồng tâm có đường kính lần lượt là \[8{\rm{\;cm}}\] và \[6{\rm{\;cm}}\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Bán kính của hai đường tròn đồng tâm lần lượt là \[R = \frac{8}{2} = 4{\rm{\;(cm)}}\] và \[r = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\]

Diện tích hình vành khuyên cần tìm là: \[{S_v} = \pi \left( {{R^2} - {r^2}} \right) = \pi \left( {{4^2} - {3^2}} \right) = 7\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Do đó diện tích hình vành khuyên cần tìm là \[7\pi {\rm{\;c}}{{\rm{m}}^2}.\]

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Cho đường tròn  ( O ; 10 c m )  đường kính  A B .  Điểm  M ∈ ( O )  sao cho  ˆ B A M = 45 ∘ .  Diện tích hình quạt  A O M  bằng (ảnh 1)

Vì \[OA = OM = 10{\rm{\;(cm)}}\] nên tam giác \[OAM\] cân tại \[O.\]

Mà \[\widehat {BAM} = 45^\circ \], suy ra tam giác \[OAM\] vuông cân tại \[O.\]

Do đó số đo cung nhỏ \[AM\] là:

Diện tích hình quạt \[AOM\] là: \[S = \frac{n}{{360}}\pi {R^2} = \frac{{90}}{{360}}\pi \cdot {10^2} = 25\pi {\rm{\;(c}}{{\rm{m}}^2}).\]

Vậy diện tích hình quạt \[AOM\] bằng \[25\pi {\rm{\;c}}{{\rm{m}}^2}.\]

Do đó ta chọn phương án A.

Lời giải

Đáp án đúng là: D

Ta có \[l = \frac{n}{{180}}\pi R.\]

Suy ra \[n = \frac{l}{{\pi R}} \cdot 180 \approx \frac{{30,8}}{{3,14 \cdot 22}} \cdot 180 \approx 80^\circ .\]

Vậy ta chọn phương án D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP