Câu hỏi:

12/11/2024 268 Lưu

Cho hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] với \[R > r\] cắt nhau tại hai điểm phân biệt và \[OO' = d.\] Chọn khẳng định đúng?

A. \[d > R + r.\]

B. \[d = R - r.\]
C. \[d < R - r.\]
D. \[R - r < d < R + r.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Cho hai đường tròn  ( O ; R )  và  ( O ′ ; r )  với  R > r  cắt nhau tại hai điểm phân biệt và  O O ′ = d .  Chọn khẳng định đúng? (ảnh 1)

Ta thấy hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] với \[R > r\] cắt nhau khi \[R - r < d < R + r\] với \[R > r.\] </>

Do đó ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Để hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) tiếp xúc trong thì \(OI = 5 - R > 0\)

Suy ra \[R = 5 - OI = 5 - 3 = 2{\rm{\;(cm)}}{\rm{.}}\]

Lời giải

Đáp án đúng là: B

Cho nửa đường tròn  ( O ; R ) ,  đường kính  A B .  Vẽ nửa đường tròn tâm  O ′ ,  đường kính  A O  (cùng phía với nửa đường tròn  ( O ) ). Một đường thẳng bất kì qua  A  cắt  ( O ) , ( O ′ )  lần lượt tại  C , D .  Nếu  B C  là tiếp tuyến của nửa đường tròn  ( O ′ )  thì (ảnh 1)

Vì đường tròn tâm \(O'\) có \[AO\] là đường kính nên \(O'C = O'O = \frac{{AO}}{2} = \frac{R}{2}.\)

Ta có \[OB = R\] và \[O'B = OO' + OB = \frac{R}{2} + R = \frac{{3R}}{2}.\]

Vì \[BC\] là tiếp tuyến của nửa đường tròn \[\left( {O'} \right)\] nên \[O'C \bot BC\] tại \[C.\]

Áp dụng định lí Pythagore cho tam giác \[O'BC\] vuông tại \[C,\] ta được \[O'{B^2} = O'{C^2} + B{C^2}.\]

Suy ra \[B{C^2} = O'{B^2} - O'{C^2} = {\left( {\frac{{3R}}{2}} \right)^2} - {\left( {\frac{R}{2}} \right)^2} = 2{R^2}.\]

Do đó \[BC = R\sqrt 2 .\]

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] ở ngoài nhau.

B. đường tròn \[\left( {O;R} \right)\] đựng \[\left( {O';r} \right).\]

C. đường tròn \[\left( {O';r} \right)\] và \[\left( {O;R} \right).\]

D. hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] cắt nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP