Câu hỏi:

12/11/2024 62

Cho hai đường tròn \[\left( {O;R} \right)\] và đường tròn \[\left( {O';r} \right)\] tiếp xúc ngoài với nhau tại \[A.\] Một đường thẳng qua \[A\] cắt \[\left( O \right)\] tại \[B\] và cắt \[\left( {O'} \right)\] tại \[C.\] Cho các nhận định sau:

(i) \[OB\,{\rm{//}}\,O'C.\]

(ii) \(OO' = R - r\) với \[R > r.\]

Khẳng định nào sau đây là đúng nhất?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho hai đường tròn \[\left( {O;R} \right)\] và đường tròn \[\left( {O';r} \right)\] tiếp xúc ngoài với nhau tại \[A.\] Một đường thẳng qua \[A\] cắt \[\left( O \right)\] tại \[B\] và cắt \[\l (ảnh 1)

⦁ Ta có \(O'A = O'C\) nên tam giác \[O'AC\] cân tại \[O'.\] Do đó \(\widehat {O'CA} = \widehat {{A_1}}.\)

Chứng minh tương tự, ta được \[\widehat {OBA} = \widehat {{A_2}}.\]

Lại có \[\widehat {{A_1}} = \widehat {{A_2}}\] (đối đỉnh) nên \[\widehat {O'CA} = \widehat {OBA}.\]

Mà hai góc này ở vị trí so le trong nên \[OB\,{\rm{//}}\,O'C.\] Do đó (i) là nhận định đúng.

⦁ Vì hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] tiếp xúc ngoài với nhau tại \[A\] nên \(OO' = R + r.\) Do đó (ii) là nhận định sai.

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \[\left( {{O_1}} \right)\] và \[\left( {{O_2}} \right)\] tiếp xúc ngoài tại \[A\] và một đường thẳng \[\left( d \right)\] tiếp xúc với \[\left( {{O_1}} \right),\,\,\left( {{O_2}} \right)\] lần lượt tại \[B,C.\] Tam giác \[ABC\] là

Xem đáp án » 12/11/2024 392

Câu 2:

Cho nửa đường tròn \(\left( {O;R} \right),\) đường kính \[AB.\] Vẽ nửa đường tròn tâm \[O',\] đường kính \[AO\] (cùng phía với nửa đường tròn \[\left( O \right)\]). Một đường thẳng bất kì qua \[A\] cắt \(\left( O \right),\,\,\left( {O'} \right)\) lần lượt tại \[C,D.\] Nếu \[BC\] là tiếp tuyến của nửa đường tròn \[\left( {O'} \right)\] thì

Xem đáp án » 12/11/2024 338

Câu 3:

III. Vận dụng

Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) với \(R < 5{\rm{\;cm}}.\) Biết \(OI = 3{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn tiếp xúc trong là

Xem đáp án » 12/11/2024 300

Câu 4:

Cho tam giác \[ABC\] vuông tại \[A,\] vẽ đường tròn \[\left( {B;BA} \right)\] và đường tròn \[\left( {C;CA} \right)\] chúng cắt nhau tại \[D\] \((D\) khác \[A\]). Kết luận nào sau đây đúng nhất?

Xem đáp án » 12/11/2024 266

Câu 5:

Cho đường tròn \[\left( O \right)\] và \[\left( {O'} \right)\] tiếp xúc ngoài tại \[A.\] Kẻ đường kính \[AB\] của đường tròn \[\left( O \right)\] và đường kính \[AC\] của đường tròn \[\left( {O'} \right).\] Gọi \[DE\] là tiếp tuyến của cả hai đường tròn \[\left( O \right)\] và \[\left( {O'} \right)\] với hai tiếp điểm \[D \in \left( O \right)\] và \[E \in \left( {O'} \right)\] \((DE\) không cắt đoạn \(O'O).\) Gọi \[M\] là giao điểm của \[BD\] và \[CE.\] Biết rằng \[\widehat {DOA} = 60^\circ \] và \[OA = 6{\rm{\;cm}}.\] Diện tích tứ giác \[ADME\] bằng

Xem đáp án » 12/11/2024 234

Câu 6:

Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\). Biết \(OI = 7{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn ở ngoài nhau là

Xem đáp án » 12/11/2024 158

Câu 7:

I. Nhận biết

Nếu hai đường tròn phân biệt tiếp xúc nhau thì số điểm chung của hai đường tròn là

Xem đáp án » 12/11/2024 149

Bình luận


Bình luận