III. Vận dụng
Cho đường tròn \[\left( {A;10{\rm{\;cm}}} \right),\,\,\left( {B;15{\rm{\;cm}}} \right),\,\,\left( {C;15{\rm{\;cm}}} \right)\] tiếp xúc ngoài với nhau đôi một. Hai đường tròn \[\left( B \right)\] và \[\left( C \right)\] tiếp xúc nhau tại \[A'.\] Đường tròn \[\left( A \right)\] tiếp xúc với đường tròn \[\left( B \right)\] và \[\left( C \right)\] lần lượt tại \[C',B'.\] Cho các nhận định sau:
(i) \[AA'\] là tiếp tuyến chung của hai đường tròn \[\left( B \right)\] và \[\left( C \right).\]
(ii) \[AA' = 15{\rm{\;cm}}.\]
Khẳng định nào sau đây là đúng nhất?
A. Chỉ có (i) đúng.
Quảng cáo
Trả lời:

Đáp án đúng là: A
Ta có:
⦁ \[AB = AC' + C'B = 10 + 15 = 25{\rm{\;(cm)}};\]
⦁ \[AC = AB' + B'C = 10 + 15 = 25{\rm{\;(cm)}};\]
⦁ \[BC = BA' + A'C = 15 + 15 = 30{\rm{\;(cm)}}{\rm{.}}\]
Suy ra tam giác \[ABC\] cân tại \[A.\]
Vì \[BA' = A'C = 15{\rm{\;(cm)}}\] nên \[A'\] là trung điểm \[BC.\]
Tam giác \[ABC\] cân tại \[A\] có \[AA'\] là đường trung tuyến nên \[AA'\] cũng là đường cao của tam giác \[ABC\] hay \[AA' \bot BC\] tại \[A'\] thuộc cả hai đường tròn \[\left( {B;15{\rm{\;cm}}} \right),\,\,\left( {C;15{\rm{\;cm}}} \right).\]
Vì vậy \[AA'\] là tiếp tuyến chung của hai đường tròn \[\left( {B;15{\rm{\;cm}}} \right),\,\,\left( {C;15{\rm{\;cm}}} \right).\]
Áp dụng định lí Pythagore cho tam giác \[AA'B\] vuông tại \[A',\] ta được: \[A{B^2} = A{A'^2} + B{A'^2}.\]
Suy ra \[A{A'^2} = A{B^2} - B{A'^2} = {25^2} - {15^2} = 400.\] Do đó \[AA' = 20{\rm{\;(cm)}}{\rm{.}}\]
Do đó chỉ có nhận định (i) là đúng. Vậy ta chọn phương án A.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. tam giác tù.
Lời giải
Đáp án đúng là: C
Vì \[{O_1}A = {O_1}B\] nên tam giác \[{O_1}AB\] cân tại \[{O_1}.\] Do đó \[\widehat {{O_1}AB} = \widehat {{O_1}BA}.\]
Chứng minh tương tự, ta được \[\widehat {{O_2}AC} = \widehat {{O_2}CA}.\]
Ta có đường thẳng \[\left( d \right)\] tiếp xúc với \[\left( {{O_1}} \right),\left( {{O_2}} \right)\] lần lượt tại \[B,C\] nên \[{O_1}B \bot BC\] tại \[B\] và \({O_2}C \bot BC\) tại \(C.\)
Xét tứ giác \({O_1}BC{O_2}\) ta có: \[\widehat {{O_1}} + \widehat {{O_2}} = 360^\circ - \widehat {B\,} - \widehat {C\,} = 360^\circ - 90^\circ - 90^\circ = 180^\circ \]
Suy ra \[\left( {180^\circ - \widehat {{O_1}AB} - \widehat {{O_1}BA}} \right) + \left( {180^\circ - \widehat {{O_2}AC} - \widehat {{O_2}CA}} \right) = 180^\circ \]
Khi đó \[2 \cdot \widehat {{O_1}AB} + 2 \cdot \widehat {{O_2}AC} = 180^\circ \]
Vì vậy \[2 \cdot \left( {\widehat {{O_1}AB} + \widehat {{O_2}AC}} \right) = 180^\circ \]
Suy ra \[\widehat {{O_1}AB} + \widehat {{O_2}AC} = 90^\circ \]
Ta có \[\widehat {{O_1}AB} + \widehat {BAC} + \widehat {{O_2}AC} = 180^\circ \]
Suy ra \[\widehat {BAC} = 180^\circ - \left( {\widehat {{O_1}AB} + \widehat {{O_2}AC}} \right) = 180^\circ - 90^\circ = 90^\circ .\]
Vậy tam giác \[ABC\] vuông tại \[A.\]
Do đó ta chọn phương án C.
Câu 2
A. \[BC = 2R.\]
Lời giải
Đáp án đúng là: B
Vì đường tròn tâm \(O'\) có \[AO\] là đường kính nên \(O'C = O'O = \frac{{AO}}{2} = \frac{R}{2}.\)
Ta có \[OB = R\] và \[O'B = OO' + OB = \frac{R}{2} + R = \frac{{3R}}{2}.\]
Vì \[BC\] là tiếp tuyến của nửa đường tròn \[\left( {O'} \right)\] nên \[O'C \bot BC\] tại \[C.\]
Áp dụng định lí Pythagore cho tam giác \[O'BC\] vuông tại \[C,\] ta được \[O'{B^2} = O'{C^2} + B{C^2}.\]
Suy ra \[B{C^2} = O'{B^2} - O'{C^2} = {\left( {\frac{{3R}}{2}} \right)^2} - {\left( {\frac{R}{2}} \right)^2} = 2{R^2}.\]
Do đó \[BC = R\sqrt 2 .\]
Vậy ta chọn phương án B.
Câu 3
A. \(1{\rm{\;cm}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\Delta ABC = \Delta DBC.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[12{\rm{\;c}}{{\rm{m}}^2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(1{\rm{\;cm}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] ở ngoài nhau.
B. đường tròn \[\left( {O;R} \right)\] đựng \[\left( {O';r} \right).\]
C. đường tròn \[\left( {O';r} \right)\] và \[\left( {O;R} \right).\]
D. hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] cắt nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.