III. Vận dụng
Cho đường tròn \[\left( {A;10{\rm{\;cm}}} \right),\,\,\left( {B;15{\rm{\;cm}}} \right),\,\,\left( {C;15{\rm{\;cm}}} \right)\] tiếp xúc ngoài với nhau đôi một. Hai đường tròn \[\left( B \right)\] và \[\left( C \right)\] tiếp xúc nhau tại \[A'.\] Đường tròn \[\left( A \right)\] tiếp xúc với đường tròn \[\left( B \right)\] và \[\left( C \right)\] lần lượt tại \[C',B'.\] Cho các nhận định sau:
(i) \[AA'\] là tiếp tuyến chung của hai đường tròn \[\left( B \right)\] và \[\left( C \right).\]
(ii) \[AA' = 15{\rm{\;cm}}.\]
Khẳng định nào sau đây là đúng nhất?
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có:
⦁ \[AB = AC' + C'B = 10 + 15 = 25{\rm{\;(cm)}};\]
⦁ \[AC = AB' + B'C = 10 + 15 = 25{\rm{\;(cm)}};\]
⦁ \[BC = BA' + A'C = 15 + 15 = 30{\rm{\;(cm)}}{\rm{.}}\]
Suy ra tam giác \[ABC\] cân tại \[A.\]
Vì \[BA' = A'C = 15{\rm{\;(cm)}}\] nên \[A'\] là trung điểm \[BC.\]
Tam giác \[ABC\] cân tại \[A\] có \[AA'\] là đường trung tuyến nên \[AA'\] cũng là đường cao của tam giác \[ABC\] hay \[AA' \bot BC\] tại \[A'\] thuộc cả hai đường tròn \[\left( {B;15{\rm{\;cm}}} \right),\,\,\left( {C;15{\rm{\;cm}}} \right).\]
Vì vậy \[AA'\] là tiếp tuyến chung của hai đường tròn \[\left( {B;15{\rm{\;cm}}} \right),\,\,\left( {C;15{\rm{\;cm}}} \right).\]
Áp dụng định lí Pythagore cho tam giác \[AA'B\] vuông tại \[A',\] ta được: \[A{B^2} = A{A'^2} + B{A'^2}.\]
Suy ra \[A{A'^2} = A{B^2} - B{A'^2} = {25^2} - {15^2} = 400.\] Do đó \[AA' = 20{\rm{\;(cm)}}{\rm{.}}\]
Do đó chỉ có nhận định (i) là đúng. Vậy ta chọn phương án A.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Để hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) tiếp xúc trong thì \(OI = 5 - R > 0\)
Suy ra \[R = 5 - OI = 5 - 3 = 2{\rm{\;(cm)}}{\rm{.}}\]
Lời giải
Đáp án đúng là: C
Vì \[{O_1}A = {O_1}B\] nên tam giác \[{O_1}AB\] cân tại \[{O_1}.\] Do đó \[\widehat {{O_1}AB} = \widehat {{O_1}BA}.\]
Chứng minh tương tự, ta được \[\widehat {{O_2}AC} = \widehat {{O_2}CA}.\]
Ta có đường thẳng \[\left( d \right)\] tiếp xúc với \[\left( {{O_1}} \right),\left( {{O_2}} \right)\] lần lượt tại \[B,C\] nên \[{O_1}B \bot BC\] tại \[B\] và \({O_2}C \bot BC\) tại \(C.\)
Xét tứ giác \({O_1}BC{O_2}\) ta có: \[\widehat {{O_1}} + \widehat {{O_2}} = 360^\circ - \widehat {B\,} - \widehat {C\,} = 360^\circ - 90^\circ - 90^\circ = 180^\circ \]
Suy ra \[\left( {180^\circ - \widehat {{O_1}AB} - \widehat {{O_1}BA}} \right) + \left( {180^\circ - \widehat {{O_2}AC} - \widehat {{O_2}CA}} \right) = 180^\circ \]
Khi đó \[2 \cdot \widehat {{O_1}AB} + 2 \cdot \widehat {{O_2}AC} = 180^\circ \]
Vì vậy \[2 \cdot \left( {\widehat {{O_1}AB} + \widehat {{O_2}AC}} \right) = 180^\circ \]
Suy ra \[\widehat {{O_1}AB} + \widehat {{O_2}AC} = 90^\circ \]
Ta có \[\widehat {{O_1}AB} + \widehat {BAC} + \widehat {{O_2}AC} = 180^\circ \]
Suy ra \[\widehat {BAC} = 180^\circ - \left( {\widehat {{O_1}AB} + \widehat {{O_2}AC}} \right) = 180^\circ - 90^\circ = 90^\circ .\]
Vậy tam giác \[ABC\] vuông tại \[A.\]
Do đó ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.