Câu hỏi:

12/11/2024 211 Lưu

III. Vận dụng

Cho đường tròn \[\left( {A;10{\rm{\;cm}}} \right),\,\,\left( {B;15{\rm{\;cm}}} \right),\,\,\left( {C;15{\rm{\;cm}}} \right)\] tiếp xúc ngoài với nhau đôi một. Hai đường tròn \[\left( B \right)\] và \[\left( C \right)\] tiếp xúc nhau tại \[A'.\] Đường tròn \[\left( A \right)\] tiếp xúc với đường tròn \[\left( B \right)\] và \[\left( C \right)\] lần lượt tại \[C',B'.\] Cho các nhận định sau:

(i) \[AA'\] là tiếp tuyến chung của hai đường tròn \[\left( B \right)\] và \[\left( C \right).\]

(ii) \[AA' = 15{\rm{\;cm}}.\]

Khẳng định nào sau đây là đúng nhất?

A. Chỉ có (i) đúng.

B. Chỉ có (ii) đúng.
C. Cả (i) và (ii) đều đúng.
D. Cả (i) và (ii) đều sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Cho đường tròn  ( A ; 10 c m ) , ( B ; 15 c m ) , ( C ; 15 c m )  tiếp xúc ngoài với nhau đôi một. Hai đường tròn  ( B )  và  ( C )  tiếp xúc nhau tại  A ′ .  Đường tròn  ( A )  tiếp xúc với đường tròn  ( B )  và  ( C )  lần lượt tại  C ′ , B ′ .  Cho các nhận định sau: (ảnh 1)

Ta có:

⦁ \[AB = AC' + C'B = 10 + 15 = 25{\rm{\;(cm)}};\]

⦁ \[AC = AB' + B'C = 10 + 15 = 25{\rm{\;(cm)}};\]

⦁ \[BC = BA' + A'C = 15 + 15 = 30{\rm{\;(cm)}}{\rm{.}}\]

Suy ra tam giác \[ABC\] cân tại \[A.\]

Vì \[BA' = A'C = 15{\rm{\;(cm)}}\] nên \[A'\] là trung điểm \[BC.\]

Tam giác \[ABC\] cân tại \[A\] có \[AA'\] là đường trung tuyến nên \[AA'\] cũng là đường cao của tam giác \[ABC\] hay \[AA' \bot BC\] tại \[A'\] thuộc cả hai đường tròn \[\left( {B;15{\rm{\;cm}}} \right),\,\,\left( {C;15{\rm{\;cm}}} \right).\]

Vì vậy \[AA'\] là tiếp tuyến chung của hai đường tròn \[\left( {B;15{\rm{\;cm}}} \right),\,\,\left( {C;15{\rm{\;cm}}} \right).\]

Áp dụng định lí Pythagore cho tam giác \[AA'B\] vuông tại \[A',\] ta được: \[A{B^2} = A{A'^2} + B{A'^2}.\]

Suy ra \[A{A'^2} = A{B^2} - B{A'^2} = {25^2} - {15^2} = 400.\] Do đó \[AA' = 20{\rm{\;(cm)}}{\rm{.}}\]

Do đó chỉ có nhận định (i) là đúng. Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho đường tròn  ( O 1 )  và  ( O 2 )  tiếp xúc ngoài tại  A  và một đường thẳng  ( d )  tiếp xúc với  ( O 1 ) , ( O 2 )  lần lượt tại  B , C .  Tam giác  A B C  là (ảnh 1)

Vì \[{O_1}A = {O_1}B\] nên tam giác \[{O_1}AB\] cân tại \[{O_1}.\] Do đó \[\widehat {{O_1}AB} = \widehat {{O_1}BA}.\]

Chứng minh tương tự, ta được \[\widehat {{O_2}AC} = \widehat {{O_2}CA}.\]

Ta có đường thẳng \[\left( d \right)\] tiếp xúc với \[\left( {{O_1}} \right),\left( {{O_2}} \right)\] lần lượt tại \[B,C\] nên \[{O_1}B \bot BC\] tại \[B\] và \({O_2}C \bot BC\) tại \(C.\)

Xét tứ giác \({O_1}BC{O_2}\) ta có: \[\widehat {{O_1}} + \widehat {{O_2}} = 360^\circ - \widehat {B\,} - \widehat {C\,} = 360^\circ - 90^\circ - 90^\circ = 180^\circ \]

Suy ra \[\left( {180^\circ - \widehat {{O_1}AB} - \widehat {{O_1}BA}} \right) + \left( {180^\circ - \widehat {{O_2}AC} - \widehat {{O_2}CA}} \right) = 180^\circ \]

Khi đó \[2 \cdot \widehat {{O_1}AB} + 2 \cdot \widehat {{O_2}AC} = 180^\circ \]

Vì vậy \[2 \cdot \left( {\widehat {{O_1}AB} + \widehat {{O_2}AC}} \right) = 180^\circ \]

Suy ra \[\widehat {{O_1}AB} + \widehat {{O_2}AC} = 90^\circ \]

Ta có \[\widehat {{O_1}AB} + \widehat {BAC} + \widehat {{O_2}AC} = 180^\circ \]

Suy ra \[\widehat {BAC} = 180^\circ - \left( {\widehat {{O_1}AB} + \widehat {{O_2}AC}} \right) = 180^\circ - 90^\circ = 90^\circ .\]

Vậy tam giác \[ABC\] vuông tại \[A.\]

Do đó ta chọn phương án C.

Lời giải

Đáp án đúng là: B

Cho nửa đường tròn  ( O ; R ) ,  đường kính  A B .  Vẽ nửa đường tròn tâm  O ′ ,  đường kính  A O  (cùng phía với nửa đường tròn  ( O ) ). Một đường thẳng bất kì qua  A  cắt  ( O ) , ( O ′ )  lần lượt tại  C , D .  Nếu  B C  là tiếp tuyến của nửa đường tròn  ( O ′ )  thì (ảnh 1)

Vì đường tròn tâm \(O'\) có \[AO\] là đường kính nên \(O'C = O'O = \frac{{AO}}{2} = \frac{R}{2}.\)

Ta có \[OB = R\] và \[O'B = OO' + OB = \frac{R}{2} + R = \frac{{3R}}{2}.\]

Vì \[BC\] là tiếp tuyến của nửa đường tròn \[\left( {O'} \right)\] nên \[O'C \bot BC\] tại \[C.\]

Áp dụng định lí Pythagore cho tam giác \[O'BC\] vuông tại \[C,\] ta được \[O'{B^2} = O'{C^2} + B{C^2}.\]

Suy ra \[B{C^2} = O'{B^2} - O'{C^2} = {\left( {\frac{{3R}}{2}} \right)^2} - {\left( {\frac{R}{2}} \right)^2} = 2{R^2}.\]

Do đó \[BC = R\sqrt 2 .\]

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] ở ngoài nhau.

B. đường tròn \[\left( {O;R} \right)\] đựng \[\left( {O';r} \right).\]

C. đường tròn \[\left( {O';r} \right)\] và \[\left( {O;R} \right).\]

D. hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] cắt nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP