Câu hỏi:

12/11/2024 225 Lưu

Cho hai đường tròn \[\left( {O;4{\rm{\;cm}}} \right)\] và \[\left( {O';3{\rm{\;cm}}} \right)\] biết \[OO' = 5{\rm{\;cm}}.\] Hai đường tròn trên cắt nhau tại \[A\] và \[B.\] Độ dài \[AB\] là

A. \[5{\rm{\;cm}}.\]

B. \[2,4{\rm{\;cm}}.\]
C. \[4,8{\rm{\;cm}}.\]
D. \[9,6{\rm{\;cm}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Cho hai đường tròn  ( O ; 4 c m )  và  ( O ′ ; 3 c m )  biết  O O ′ = 5 c m .  Hai đường tròn trên cắt nhau tại  A  và  B .  Độ dài  A B  là (ảnh 1)

Gọi \[H\] là giao điểm của \[OO'\] và \[AB.\]

Vì \[{4^2} + {3^2} = {5^2}\] hay \(O{A^2} + O'{A^2} = O{O'^2}\) nên theo định lí Pythagore đảo, ta được tam giác \[OO'A\] vuông tại \[A.\]

Vì \[OA = OB = 4{\rm{\;(cm)}}\] nên \[O\] nằm trên đường trung trực của đoạn \[AB.\]

Chứng minh tương tự, ta được \[O'\] nằm trên đường trung trực của đoạn \[AB.\]

Khi đó \[OO'\] là đường trung trực của đoạn \[AB.\]

Vì vậy \[OO' \bot AB\] tại \[H\] và \[H\] là trung điểm \[AB.\]

Xét \[\Delta OAH\] và \[\Delta OO'A,\] có:

\[\widehat {OHA} = \widehat {OAO'} = 90^\circ \] và \[\widehat {AOH}\] là góc chung.

Do đó (g.g)

Suy ra \[\frac{{AH}}{{O'A}} = \frac{{OA}}{{OO'}}\] nên \[AH = \frac{{OA}}{{OO'}} \cdot O'A = \frac{4}{5} \cdot 3 = \frac{{12}}{5}{\rm{\;(cm)}}{\rm{.}}\]

Vì \[H\] là trung điểm Cho hai đường tròn  ( O ; 4 c m )  và  ( O ′ ; 3 c m )  biết  O O ′ = 5 c m .  Hai đường tròn trên cắt nhau tại  A  và  B .  Độ dài  A B  là (ảnh 2) nên \[AB = 2AH = 2 \cdot \frac{{12}}{5} = \frac{{24}}{5} = 4,8{\rm{\;(cm)}}{\rm{.}}\]

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Để hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) tiếp xúc trong thì \(OI = 5 - R > 0\)

Suy ra \[R = 5 - OI = 5 - 3 = 2{\rm{\;(cm)}}{\rm{.}}\]

Lời giải

Đáp án đúng là: B

Cho nửa đường tròn  ( O ; R ) ,  đường kính  A B .  Vẽ nửa đường tròn tâm  O ′ ,  đường kính  A O  (cùng phía với nửa đường tròn  ( O ) ). Một đường thẳng bất kì qua  A  cắt  ( O ) , ( O ′ )  lần lượt tại  C , D .  Nếu  B C  là tiếp tuyến của nửa đường tròn  ( O ′ )  thì (ảnh 1)

Vì đường tròn tâm \(O'\) có \[AO\] là đường kính nên \(O'C = O'O = \frac{{AO}}{2} = \frac{R}{2}.\)

Ta có \[OB = R\] và \[O'B = OO' + OB = \frac{R}{2} + R = \frac{{3R}}{2}.\]

Vì \[BC\] là tiếp tuyến của nửa đường tròn \[\left( {O'} \right)\] nên \[O'C \bot BC\] tại \[C.\]

Áp dụng định lí Pythagore cho tam giác \[O'BC\] vuông tại \[C,\] ta được \[O'{B^2} = O'{C^2} + B{C^2}.\]

Suy ra \[B{C^2} = O'{B^2} - O'{C^2} = {\left( {\frac{{3R}}{2}} \right)^2} - {\left( {\frac{R}{2}} \right)^2} = 2{R^2}.\]

Do đó \[BC = R\sqrt 2 .\]

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] ở ngoài nhau.

B. đường tròn \[\left( {O;R} \right)\] đựng \[\left( {O';r} \right).\]

C. đường tròn \[\left( {O';r} \right)\] và \[\left( {O;R} \right).\]

D. hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] cắt nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP