Cho hai đường tròn \[\left( {O;4{\rm{\;cm}}} \right)\] và \[\left( {O';3{\rm{\;cm}}} \right)\] biết \[OO' = 5{\rm{\;cm}}.\] Hai đường tròn trên cắt nhau tại \[A\] và \[B.\] Độ dài \[AB\] là
A. \[5{\rm{\;cm}}.\]
Quảng cáo
Trả lời:
Đáp án đúng là: C

Gọi \[H\] là giao điểm của \[OO'\] và \[AB.\]
Vì \[{4^2} + {3^2} = {5^2}\] hay \(O{A^2} + O'{A^2} = O{O'^2}\) nên theo định lí Pythagore đảo, ta được tam giác \[OO'A\] vuông tại \[A.\]
Vì \[OA = OB = 4{\rm{\;(cm)}}\] nên \[O\] nằm trên đường trung trực của đoạn \[AB.\]
Chứng minh tương tự, ta được \[O'\] nằm trên đường trung trực của đoạn \[AB.\]
Khi đó \[OO'\] là đường trung trực của đoạn \[AB.\]
Vì vậy \[OO' \bot AB\] tại \[H\] và \[H\] là trung điểm \[AB.\]
Xét \[\Delta OAH\] và \[\Delta OO'A,\] có:
\[\widehat {OHA} = \widehat {OAO'} = 90^\circ \] và \[\widehat {AOH}\] là góc chung.
Do đó (g.g)
Suy ra \[\frac{{AH}}{{O'A}} = \frac{{OA}}{{OO'}}\] nên \[AH = \frac{{OA}}{{OO'}} \cdot O'A = \frac{4}{5} \cdot 3 = \frac{{12}}{5}{\rm{\;(cm)}}{\rm{.}}\]
Vì \[H\] là trung điểm
nên \[AB = 2AH = 2 \cdot \frac{{12}}{5} = \frac{{24}}{5} = 4,8{\rm{\;(cm)}}{\rm{.}}\]
Vậy ta chọn phương án C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(1{\rm{\;cm}}{\rm{.}}\)
Lời giải
Đáp án đúng là: B
Để hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) tiếp xúc trong thì \(OI = 5 - R > 0\)
Suy ra \[R = 5 - OI = 5 - 3 = 2{\rm{\;(cm)}}{\rm{.}}\]
Câu 2
A. \[BC = 2R.\]
Lời giải
Đáp án đúng là: B

Vì đường tròn tâm \(O'\) có \[AO\] là đường kính nên \(O'C = O'O = \frac{{AO}}{2} = \frac{R}{2}.\)
Ta có \[OB = R\] và \[O'B = OO' + OB = \frac{R}{2} + R = \frac{{3R}}{2}.\]
Vì \[BC\] là tiếp tuyến của nửa đường tròn \[\left( {O'} \right)\] nên \[O'C \bot BC\] tại \[C.\]
Áp dụng định lí Pythagore cho tam giác \[O'BC\] vuông tại \[C,\] ta được \[O'{B^2} = O'{C^2} + B{C^2}.\]
Suy ra \[B{C^2} = O'{B^2} - O'{C^2} = {\left( {\frac{{3R}}{2}} \right)^2} - {\left( {\frac{R}{2}} \right)^2} = 2{R^2}.\]
Do đó \[BC = R\sqrt 2 .\]
Vậy ta chọn phương án B.
Câu 3
A. tam giác tù.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(1{\rm{\;cm}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[12{\rm{\;c}}{{\rm{m}}^2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\Delta ABC = \Delta DBC.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] ở ngoài nhau.
B. đường tròn \[\left( {O;R} \right)\] đựng \[\left( {O';r} \right).\]
C. đường tròn \[\left( {O';r} \right)\] và \[\left( {O;R} \right).\]
D. hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] cắt nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.