Câu hỏi:

12/11/2024 1,010

Cho đường tròn \[\left( {O;R} \right).\] Từ một điểm \[M\] nằm ngoài đường tròn kẻ các tiếp tuyến \[ME,MF\] đến đường tròn (với \[E,F\] là các tiếp điểm). Đoạn \[OM\] cắt đường tròn \[\left( O \right)\] tại \[I.\] Kẻ đường kính \[ED\] của đường tròn \[\left( O \right).\] Hạ \[FK\] vuông góc với \[ED.\] Gọi \[P\] là giao điểm của \[MD\] và \[FK.\] Cho \[FK = 6{\rm{\;cm}}\] và các khẳng định sau:

(i) Các điểm \[M,E,O,F\] cùng thuộc một đường tròn.

(ii) \[FP = PK = 3{\rm{\;cm}}.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho đường tròn  ( O ; R ) .  Từ một điểm  M  nằm ngoài đường tròn kẻ các tiếp tuyến  M E , M F  đến đường tròn (với  E , F  là các tiếp điểm). Đoạn  O M  cắt đường tròn  ( O )  tại  I .  Kẻ đường kính  E D  của đường tròn  ( O ) .  Hạ  F K  vuông góc với  E D .  Gọi  P  là giao điểm của  M D  và  F K .  Cho  F K = 6 c m  và các khẳng định sau: (ảnh 1)

⦁ Ta có \[ME\] là tiếp tuyến của đường tròn \[\left( O \right)\] nên \[ME \bot OE\] tại \[E.\]

Do đó tam giác \[OEM\] vuông tại \[E.\]

Gọi \[J\] là trung điểm \[OM.\]

Tam giác \[OEM\] vuông tại \[E\] có \[EJ\] là đường trung tuyến ứng với cạnh huyền \(OM\)

Suy ra \[EJ = JO = JM = \frac{{OM}}{2}.\]

Do đó ba điểm \[M,E,O\] cùng thuộc đường tròn tâm \[J,\] đường kính \(OM\).

Chứng minh tương tự, ta được ba điểm \(M,\,\,F,\,\,O\) cùng thuộc đường tròn tâm \(J,\) đường kính \(OM.\)

Vì vậy các điểm \(M,\,\,E,\,\,O,\,\,F\) cùng thuộc đường tròn tâm \(J\) đường kính \(OM.\)

Do đó khẳng định (i) là đúng.

⦁ Gọi \(G\) là giao điểm của \(EM\) và \(FD\).

Tam giác \(OEF\) cân tại \(O\) (do \(OE = OF = R)\) có \(OM\) là đường phân giác (theo tính chất hai tiếp tuyến cắt nhau) nên \(OM\) cũng là đường cao của tam giác \(OEF\), do đó \(OM \bot EF\).

Tam giác \(FED\) có \(FO\) là đường trung tuyến ứng với cạnh \(ED\) và \(FO = \frac{{ED}}{2}\) nên tam giác \(FED\) vuông tại \(F\). Do đó \(EF \bot FD\).

Suy ra \(FD\,{\rm{//}}\,OM\) hay \(DG\,{\rm{//}}\,OM\).

Tam giác \(EDG\) có \(O\) là trung điểm \(ED\) và \(DG\,{\rm{//}}\,OM\) nên \(OM\) là đường trung bình của tam giác \(EDG\). Khi đó \(M\) là trung điểm \(EG\) nên \(ME = MG\).

Vì \(PK\,{\rm{//}}\,ME\) (do cùng vuông góc với \(ED)\) nên áp dụng định lí Thalès, ta được \(\frac{{PK}}{{ME}} = \frac{{DP}}{{DM}}\) (1)

Chứng minh tương tự, ta được \(\frac{{PF}}{{MG}} = \frac{{DP}}{{DM}}\) (2)

Từ (1), (2), ta suy ra \(\frac{{PF}}{{MG}} = \frac{{PK}}{{ME}}.\)

Mà \(ME = MG\) nên \(PF = PK\) hay \(P\) là trung điểm của \(FK.\)

Vì vậy \(PF = PK = \frac{{FK}}{2} = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\) Do đó khẳng định (ii) là đúng.

Vậy ta chọn phương án C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn tâm \(O\) và điểm \(A\) nằm ngoài đường tròn. Từ \(A\) kẻ hai tiếp tiếp tuyến \(AB\) và \(AC\) của đường tròn tâm \(O\) (điểm \(B,C\) là tiếp điểm). Nếu \(\widehat {BAC} = 90^\circ \) thì tam giác \(ABO\) là

Xem đáp án » 12/11/2024 1,072

Câu 2:

Một họa tiết trang trí có dạng hình tròn bán kính \[5{\rm{\;dm}}\] được chia thành nhiều hình quạt tròn (hình vẽ), mỗi hình quạt tròn có góc ở tâm là \[7,5^\circ .\]

Một họa tiết trang trí có dạng hình tròn bán kính \[5{\rm{\;dm}}\] được chia thành nhiều hình quạt tròn (hình vẽ), mỗi hình quạt tròn có góc ở tâm là \[7,5^\circ .\] Diện tích tất cả các hình (ảnh 1)

Diện tích tất cả các hình quạt tròn được tô màu ở hình vẽ trên là bao nhiêu đề-xi-mét vuông (làm tròn kết quả đến hàng phần trăm)?

Xem đáp án » 12/11/2024 356

Câu 3:

Cho đường tròn \[\left( {O;R} \right)\] và dây \[AB = R.\] Trên tia đối của tia \[BA\] lấy điểm \[C\] sao cho \[BC = BA.\] Kéo dài \[CO\] cắt đường tròn \[\left( O \right)\] lần lượt tại \[D,E\] (\[D\] nằm giữa \[C,O\]). Kết luận nào sau đây là sai?

Xem đáp án » 12/11/2024 349

Câu 4:

Cho hình chữ nhật \[ABCD\] có \[AD = 8{\rm{\;cm}},\,\,AB = 15{\rm{\;cm}}.\] Biết rằng bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn. Bán kính của đường tròn đó bằng

Xem đáp án » 12/11/2024 287

Câu 5:

Cho hai đường tròn đồng tâm \[\left( {O;2{\rm{\;cm}}} \right)\] và \[\left( {O;3{\rm{\;cm}}} \right).\]

Cho hai đường tròn đồng tâm  ( O ; 2 c m )  và  ( O ; 3 c m ) . Diện tích hình vành khuyên được giới hạn bởi hai đường tròn đó là (ảnh 1)

Diện tích hình vành khuyên được giới hạn bởi hai đường tròn đó là

Xem đáp án » 12/11/2024 258

Câu 6:

Nếu đường thẳng \[d\] là tiếp tuyến của đường tròn \[\left( O \right)\] tại \[A\] thì

Xem đáp án » 12/11/2024 246
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay