Câu hỏi:

13/11/2024 193

Cho tam giác nhọn \[ABC\] có ba đỉnh nằm trên đường tròn \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\] và gọi\[M\] là trung điểm \[BC\]. Cho các khẳng định sau:

(i) \(OM \bot BC\).

(ii) \(OM\,{\rm{//}}\,AH\).

(iii) \(HM = \frac{{HF}}{2}\).

Có bao nhiêu khẳng định đúng trong các khẳng định trên?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tam giác nhọn  A B C  có ba đỉnh nằm trên đường tròn  ( O ) . Hai đường cao  B D  và  C E  cắt nhau tại  H . Vẽ đường kính  A F  và gọi M  là trung điểm  B C . Cho các khẳng định sau: (ảnh 1)

⦁ Xét đường tròn \[\left( O \right)\] có \(\widehat {ABF} = 90^\circ \) và \(\widehat {ACF} = 90^\circ \) (các góc nội tiếp chắn nửa đường tròn)

Suy ra \[BF \bot \;AB\] và \[CF \bot \;AC\]

Mà \[CE \bot \;AB\] và \[BD \bot \;AC\] nên \[CE\,{\rm{//}}\,BF,\] \[BD\,{\rm{//}}\,CF\].

Suy ra \[BHCF\] là hình bình hành, do đó hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Lại có \[M\] là trung điểm của \[BC\] nên \[M\] cũng là trung điểm của \[HF\] hay \(HM = \frac{{HF}}{2}\).

⦁ Xét \(\Delta AHF\) có \(O,\,\,M\) lần lượt là trung điểm của \(AF,\,\,HF\) nên \[OM\] là đường trung bình của tam giác \[AHF\], do đó \[AH\,{\rm{//}}\,OM\].

⦁ Xét tam giác \[ABC\] có \[BD\] và \[CE\] là hai đường cao cắt nhau tại \[H\] nên \[H\] là trực tâm tam giác \[ABC\]. Suy ra  \[AH \bot \;BC\] mà \[AH\,{\rm{//}}\,OM\], do đó \[OM \bot \;BC\].

Vậy cả ba khẳng định đã cho đều đúng, ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \(\left( O \right)\) đi qua ba điểm \(A,\,\,B,\,\,C\). Biết \(\widehat {ACB} = 56^\circ ,\) số đo của cung nhỏ \(AB\) là

Xem đáp án » 13/11/2024 636

Câu 2:

III. Vận dụng

Cho hình vẽ bên.

Cho hình vẽ bên. Số đo cung lớn  A B  trong hình ngôi sao năm cánh đã cho bằng (ảnh 1)Cho hình vẽ bên. Số đo cung lớn  A B  trong hình ngôi sao năm cánh đã cho bằng (ảnh 2)

Số đo cung lớn \[AB\] trong hình ngôi sao năm cánh đã cho bằng

Xem đáp án » 13/11/2024 194

Câu 3:

Cho tam giác \[ABC\] có ba đỉnh nằm trên đường tròn \[\left( {O;{\rm{ }}R} \right)\], đường cao \[AH\], biết \[AB = 12{\rm{ cm}}\], \[AC = 15\,\,{\rm{cm}}\], \[AH = 6\,\,{\rm{cm}}\]. Đường kính của đường tròn \[\left( O \right)\] bằng

Xem đáp án » 13/11/2024 183

Câu 4:

Cho tam giác nhọn \[ABC\] có 3 đỉnh nằm trên đường tròn \[\left( O \right)\], đường kính \[BD\] . Biết \(\widehat {BAC} = 45^\circ \). Số đo của góc \[\widehat {CBD}\] là

Xem đáp án » 13/11/2024 158

Câu 5:

II. Thông hiểu

Cho đường tròn \(\left( O \right)\) đi qua hai điểm \(A,\,\,B\). Biết \(\widehat {AOB} = 100^\circ \) thì số đo của cung lớn \(AB\) là

Xem đáp án » 13/11/2024 131

Câu 6:

Góc nội tiếp chắn nửa đường tròn có số đo bằng

Xem đáp án » 13/11/2024 97

Bình luận


Bình luận