III. Vận dụng
Cho tam giác nhọn \[ABC\] có ba đỉnh nằm trên đường tròn \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\] và gọi\[M\] là trung điểm \[BC\]. Cho các khẳng định sau:
(i) \(OM \bot BC\).
(ii) \(OM\,{\rm{//}}\,AH\).
(iii) \(HM = \frac{{HF}}{2}\).
Có bao nhiêu khẳng định đúng trong các khẳng định trên?
Quảng cáo
Trả lời:
Đáp án đúng là: D
⦁ Xét đường tròn \[\left( O \right)\] có \(\widehat {ABF} = 90^\circ \) và \(\widehat {ACF} = 90^\circ \) (các góc nội tiếp chắn nửa đường tròn).
Suy ra \[BF \bot \;AB\] và \[CF \bot \;AC\].
Mà \[CE \bot \;AB\] và \[BD \bot \;AC\] nên \[CE\,{\rm{//}}\,BF,\] \[BD\,{\rm{//}}\,CF\].
Suy ra \[BHCF\] là hình bình hành, do đó hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Lại có \[M\] là trung điểm của \[BC\] nên \[M\] cũng là trung điểm của \[HF\] hay \(HM = \frac{{HF}}{2}\).
⦁ Xét \(\Delta AHF\) có \(O,\,\,M\) lần lượt là trung điểm của \(AF,\,\,HF\) nên \[OM\] là đường trung bình của tam giác \[AHF\], do đó \[AH\,{\rm{//}}\,OM\].
⦁ Xét tam giác \[ABC\] có \[BD\] và \[CE\] là hai đường cao cắt nhau tại \[H\] nên \[H\] là trực tâm tam giác \[ABC\]. Suy ra \[AH \bot \;BC\] mà \[AH\,{\rm{//}}\,OM\], do đó \[OM \bot \;BC\].
Vậy cả ba khẳng định đã cho đều đúng, ta chọn phương án D.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Góc \[BDC\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {BDC} = 90^\circ \).
Suy ra \(\widehat {ADC} = 180^\circ - \widehat {BDC} = 180^\circ - 90^\circ = 90^\circ \) hay tam giác \[ADC\] vuông tại \[D\].
Suy ra \(\widehat {ACD} = 90^\circ - \widehat {CAD} = 90^\circ - 60^\circ = 30^\circ \).
Vì \[\widehat {EOD}\] và \[\widehat {ECD}\] là góc ở tâm và góc nội tiếp cùng chắn cung \[ED\] của \[\left( O \right)\] nên:
\(\widehat {EOD} = 2\widehat {ECD} = 2 \cdot 30^\circ = 60^\circ \).
Mà tam giác \[EOD\] cân tại \[O\], suy ra tam giác \[EOD\] là tam giác đều.
Vậy \(\widehat {EDO} = 60^\circ \).
Lời giải
Đáp án đúng là: A
Xét \[\left( O \right)\] có \[\;\widehat {BDA} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn) nên \[BD \bot \;EA\] mà \[D\] là trung điểm \[EA.\]
Suy ra \[\Delta BEA\] có \[BD\] vừa là đường cao vừa là đường trung tuyến, do đó \[\Delta BAE\] cân tại \[B\].
Vậy \(\widehat {BEA} = \widehat {BAD} = 50^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.