Câu hỏi:
13/11/2024 59Cho tam giác \[ABC\] vuông tại \[A\] đường cao \[AH\]. Kẻ \[HE\] vuông góc với \[AB\] tại \[E\], kẻ \[HF\] vuông góc với \[AC\] tại \[F\]. Chọn câu đúng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Xét tứ giác \[AEHF\] có: \(\widehat A = \widehat E = \widehat F = 90^\circ \)
Suy ra tứ giác \[AEHF\] là hình chứ nhật.
Suy ra tứ giác \[AEHF\] là tứ giác nội tiếp (có tổng hai góc đối diện bằng \(180^\circ \)).
Do đó \(\widehat {AFE} = \widehat {AHE}\) (hai góc nội tiếp cùng chắn cung \[AE\])
Mà \(\widehat {AHE} = \widehat {ABH}\) (cùng phụ góc \[BHE\])
Suy ra \(\widehat {AFE} = \widehat {ABC}\).
Xét tứ giác \[BEFC\] có: \(\widehat {AFE} = \widehat {ABC}\)
Góc \[AFE\] là góc ngoài tại đỉnh \[F\].
Suy ra \[BEFC\] là tứ giác nội tiếp.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
I. Nhận biết
Cho tứ giác \[ABCD\] nội tiếp đường tròn \[\left( O \right)\]. Khẳng định nào sau đây là sai?
Câu 3:
Cho đường tròn \[\left( O \right)\] đường kính \[AB\]. Gọi \[H\] là điểm nằm giữa \[O\] và \[B\]. Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H\]. Trên cung nhỏ \[AC\] lấy điểm \[E\], kẻ \[CK \bot AE\] tại K. Đường thẳng \[DE\] cắt \[CK\] tại \[F\]. Tích \[AH.{\rm{ }}AB\] bằng
Câu 4:
Cho điểm \[A\] nằm ngoài đường tròn \[\left( O \right)\] qua \[A\] kẻ hai tiếp tuyến \[AB\] và \[AC\] với đường tròn (\[B,{\rm{ }}C\] là tiếp điểm). Chọn đáp án đúng:
Câu 5:
Cho tam giác \[ABC\] có hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Trong các tứ giác sau, tứ giác nội tiếp là
Câu 6:
Cho hình bình hành \[ABCD\]. Đường tròn đi qua ba đỉnh \[A,{\rm{ }}B,{\rm{ }}C\] cắt đường thẳng \[CD\] tại \[P\] (điểm \[P\] khác với điểm \[C\]). Khi đó
về câu hỏi!