Câu hỏi:

13/11/2024 2,725

Cho tam giác \[ABC\] có ba góc nhọn, đường cao \[AH\] và nội tiếp đường tròn tâm \[\left( O \right)\], đường kính \[AM\]. Gọi \[N\] là giao điểm của \[AH\] với đường tròn \[\left( O \right)\]. Tứ giác \[BCMN\] là

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho tam giác  A B C  có ba góc nhọn, đường cao  A H  và nội tiếp đường tròn tâm  ( O ) , đường kính  A M . Gọi  N  là giao điểm của  A H  với đường tròn  ( O ) . Tứ giác  B C M N  là (ảnh 1)

Góc \[ACM\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {ACM} = 90^\circ \).

Xét hai tam giác \(ABH\) và \[AMC\] có:

\(\widehat {AHB} = \widehat {ACM} = 90^\circ \)

\(\widehat {ABH} = \widehat {AMC}\) (hai góc nội tiếp cùng chắn cung \[AC\] của \[\left( O \right)\])

Nên (g.g)

Suy ra \(\widehat {BAH} = \widehat {OAC};\widehat {OCA} = \widehat {OAC}\).

Do đó \(\widehat {BAH} = \widehat {OCA}\).

Góc \[ANM\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {ANM} = 90^\circ \).

Suy ra \[MNBC\] là hình thang, suy ra \[BC\,{\rm{//}}\,MN\] và \(\widehat {CBN} = \widehat {BCM}\).

Vậy \[BCMN\] là hình thang cân.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

II. Thông hiểu

Phép quay với \[O\] là tâm biến tam giác đều thành chính nó là phép quay thuận chiều một góc:

Xem đáp án » 13/11/2024 456

Câu 2:

Cho tứ giác \[ABCD\] nội tiếp một đường tròn \[\left( O \right)\]. Biết \(\widehat {BOD} = 140^\circ \). Số đo góc \(\widehat {BCD}\) là

Xem đáp án » 13/11/2024 385

Câu 3:

Trong các hình sau, hình nội tiếp được trong đường tròn là:

Xem đáp án » 13/11/2024 209

Câu 4:

I. Nhận biết

Đa giác đều trong các hình dưới đây là

Đa giác đều trong các hình dưới đây là (ảnh 1)

Xem đáp án » 13/11/2024 166

Câu 5:

Tam giác đều \[ABC\] nội tiếp đường tròn. Khi đó góc \[AOB\] bằng

Xem đáp án » 13/11/2024 142

Câu 6:

Cho ngũ giác đều \[MNPQR\] có tâm \[O.\] Phép quay nào với tâm \[O\] biến ngũ giác đều \[MNPQR\] thành chính nó?

Xem đáp án » 13/11/2024 124
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua