Câu hỏi:

13/11/2024 191 Lưu

Tam giác đều \[ABC\] nội tiếp đường tròn. Khi đó góc \[AOB\] bằng

A. \(120^\circ \).

B. \(60^\circ \).

C. \(140^\circ \).

D. \(80^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Tam giác đều  A B C  nội tiếp đường tròn. Khi đó góc  A O B  bằng (ảnh 1)

Góc \[AOB\] và \[ACB\] lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung \[AB\] của đường tròn \[\left( O \right)\] nên \(\widehat {AOB} = 2\widehat {ACB} = 2 \cdot 60^\circ = 120^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho tam giác  A B C  có ba góc nhọn, đường cao  A H  và nội tiếp đường tròn tâm  ( O ) , đường kính  A M . Gọi  N  là giao điểm của  A H  với đường tròn  ( O ) . Tứ giác  B C M N  là (ảnh 1)

Góc \[ACM\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {ACM} = 90^\circ \).

Xét hai tam giác \(ABH\) và \[AMC\] có:

\(\widehat {AHB} = \widehat {ACM} = 90^\circ \)

\(\widehat {ABH} = \widehat {AMC}\) (hai góc nội tiếp cùng chắn cung \[AC\] của \[\left( O \right)\])

Nên (g.g)

Suy ra \(\widehat {BAH} = \widehat {OAC};\widehat {OCA} = \widehat {OAC}\).

Do đó \(\widehat {BAH} = \widehat {OCA}\).

Góc \[ANM\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {ANM} = 90^\circ \).

Suy ra \[MNBC\] là hình thang, suy ra \[BC\,{\rm{//}}\,MN\] và \(\widehat {CBN} = \widehat {BCM}\).

Vậy \[BCMN\] là hình thang cân.

Lời giải

Đáp án đúng là: D

Phép quay thuận chiều tâm một góc \(0^\circ ;\,\,120^\circ ;\,\,240^\circ ;\,\,360^\circ \) biến tam giác đều thành chính nó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hình thang, hình chữ nhật.

B. Hình thang cân, hình bình hành.

C. Hình thoi, hình vuông.

D. Hình thang, hình chữ nhật, hình vuông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.

Hình a.

B. Hình b.

C. Hình c.

D. Hình d.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP