Câu hỏi:

14/11/2024 777

Cho tứ giác \[ABCD\] nội tiếp đường tròn \[\left( O \right)\] sao cho tam giác \[ABC\] nhọn. Hai đường cao \[AM,{\rm{ }}CN\] của tam giác \[ABC\] cắt nhau tại \[H.\] Khẳng định nào sau đây là đúng?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tứ giác  A B C D  nội tiếp đường tròn  ( O )  sao cho tam giác  A B C  nhọn. Hai đường cao  A M , C N  của tam giác  A B C  cắt nhau tại  H .  Khẳng định nào sau đây là đúng? (ảnh 1)

Xét phương án A:

a) Ta có \[\widehat {HMB} = \widehat {HNB} = 90^\circ \] (do \[AM,{\rm{ }}CN\] là hai đường cao cắt nhau tại \[H\] của tam giác ABC).

Do đó hai điểm \[M,{\rm{ }}N\] cùng nằm trên đường tròn đường kính \[HB.\]

Khi đó tứ giác \[HMBN\] nội tiếp đường tròn đường kính \[HB.\]

Vậy \[\widehat {MHN} + \widehat {MBN} = 180^\circ \] hay \[\widehat {MHN} + \widehat {ABC} = 180^\circ .\]

Xét phương án B:

Ta có tứ giác \[ABCD\] nội tiếp đường tròn \[\left( O \right)\] nên \[\widehat {ADC} + \widehat {ABC} = 180^\circ .\]

Mà \[\widehat {MHN} + \widehat {ABC} = 180^\circ \] (câu a) nên \[\widehat {ADC} = \widehat {MHN}\,.\]

Lại có \[\widehat {AHC} = \widehat {MHN}\] (cặp góc đối đỉnh) nên \[\widehat {AHC} = \widehat {ADC}\,.\]

Xét phương án C:

Tam giác ABM, có: \[\widehat {AMB} + \widehat {BAM} + \widehat {ABC} = 180^\circ \] (tổng ba góc của một tam giác)

Mà \[\widehat {ADC} + \widehat {ABC} = 180^\circ \] (chứng minh trên)

Suy ra \[\widehat {ADC} = \widehat {AMB} + \widehat {BAM} = 90^\circ + \widehat {BAM}\,.\]

Vậy \[\widehat {ADC} = \widehat {BAM} + 90^\circ .\]

Do đó chọn phương án D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Người ta cần xây dựng một khung cổng hình chữ nhật rộng 4 m và cao 3 m, bên ngoài khung cổng được bao bởi một khung thép dạng nửa hình tròn (như hình vẽ).

 Người ta cần xây dựng một khung cổng hình chữ nhật rộng 4 m và cao 3 m, bên ngoài khung cổng được bao bởi một khung thép dạng nửa hình tròn (như hình vẽ).Chiều dài của đoạn thép dùng để làm  (ảnh 1)

Chiều dài của đoạn thép dùng để làm khung nửa đường tròn đó là bao nhiêu? (làm tròn kết quả đến hàng phần trăm).

Xem đáp án » 14/11/2024 2,534

Câu 2:

Cho tứ giác \[ABCD\] nội tiếp đường tròn \[\left( {O;{\rm{ }}R} \right).\] Biết rằng \[\widehat {ABC} = 70^\circ ;\,\,\widehat {ODC} = 50^\circ .\] Số đo \[\widehat {AOD}\] là

Xem đáp án » 14/11/2024 1,122

Câu 3:

Tam giác đều \[ABC\] nội tiếp đường tròn. Khi đó góc \[AOB\] bằng

Xem đáp án » 14/11/2024 779

Câu 4:

III. Vận dụng

Người ta làm một khung gỗ hình tam giác đều đặt vừa khít một chiếc đồng hồ hình tròn có đường kính \[40{\rm{ cm}}.\]

 Người ta làm một khung gỗ hình tam giác đều đặt vừa khít một chiếc đồng hồ hình tròn có đường kính \[40{\rm{ cm}}.\] Độ dài các cạnh (phía bên trong) của khung gỗ phải bằng bao nhiêu (làm tr (ảnh 1)

Độ dài các cạnh (phía bên trong) của khung gỗ phải bằng bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

Xem đáp án » 14/11/2024 458

Câu 5:

I. Nhận biết

Khẳng định nào sau đây là sai?

Xem đáp án » 14/11/2024 339

Câu 6:

II. Thông hiểu

Khi tứ giác \[MNPQ\] nội tiếp đường tròn, và có \(\widehat M = 90^\circ \). Khi đó, góc \[P\] bằng

Xem đáp án » 14/11/2024 316
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua