Câu hỏi:

14/11/2024 956

Cho tứ giác \[ABCD\] nội tiếp đường tròn \[\left( O \right)\] sao cho tam giác \[ABC\] nhọn. Hai đường cao \[AM,{\rm{ }}CN\] của tam giác \[ABC\] cắt nhau tại \[H.\] Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tứ giác  A B C D  nội tiếp đường tròn  ( O )  sao cho tam giác  A B C  nhọn. Hai đường cao  A M , C N  của tam giác  A B C  cắt nhau tại  H .  Khẳng định nào sau đây là đúng? (ảnh 1)

Xét phương án A:

a) Ta có \[\widehat {HMB} = \widehat {HNB} = 90^\circ \] (do \[AM,{\rm{ }}CN\] là hai đường cao cắt nhau tại \[H\] của tam giác ABC).

Do đó hai điểm \[M,{\rm{ }}N\] cùng nằm trên đường tròn đường kính \[HB.\]

Khi đó tứ giác \[HMBN\] nội tiếp đường tròn đường kính \[HB.\]

Vậy \[\widehat {MHN} + \widehat {MBN} = 180^\circ \] hay \[\widehat {MHN} + \widehat {ABC} = 180^\circ .\]

Xét phương án B:

Ta có tứ giác \[ABCD\] nội tiếp đường tròn \[\left( O \right)\] nên \[\widehat {ADC} + \widehat {ABC} = 180^\circ .\]

Mà \[\widehat {MHN} + \widehat {ABC} = 180^\circ \] (câu a) nên \[\widehat {ADC} = \widehat {MHN}\,.\]

Lại có \[\widehat {AHC} = \widehat {MHN}\] (cặp góc đối đỉnh) nên \[\widehat {AHC} = \widehat {ADC}\,.\]

Xét phương án C:

Tam giác ABM, có: \[\widehat {AMB} + \widehat {BAM} + \widehat {ABC} = 180^\circ \] (tổng ba góc của một tam giác)

Mà \[\widehat {ADC} + \widehat {ABC} = 180^\circ \] (chứng minh trên)

Suy ra \[\widehat {ADC} = \widehat {AMB} + \widehat {BAM} = 90^\circ + \widehat {BAM}\,.\]

Vậy \[\widehat {ADC} = \widehat {BAM} + 90^\circ .\]

Do đó chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

 Người ta cần xây dựng một khung cổng hình chữ nhật rộng 4 m và cao 3 m, bên ngoài khung cổng được bao bởi một khung thép dạng nửa hình tròn (như hình vẽ).Chiều dài của đoạn thép dùng để làm  (ảnh 2)

Gọi \[ABCD\] là khung cổng hình chữ nhật.

Vẽ hình chữ nhật \[ABEF\] (hình vẽ) và \[O\] là giao điểm của hai đường chéo \[AE,{\rm{ }}BF.\]

Khi đó ta có \[AF = 2AD = 2 \cdot 3 = 6{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\]

Tam giác \[ABF\] vuông tại A, theo định lí Pythagore, ta có:

\[B{F^2} = A{F^2} + A{B^2} = {6^2} + {4^2} = 52.\]

Do đó \[BF = \sqrt {52} = 2\sqrt {13} \,\,\left( {{\rm{cm}}} \right).\]

Vì vậy bán kính đường tròn ngoại tiếp hình chữ nhật \[ABEF\] là: \[R = \frac{{BF}}{2} = \sqrt {13} \,\,\left( {{\rm{cm}}} \right).\]

Chu vi đường tròn ngoại tiếp hình chữ nhật \[ABEF\] là: \[C = 2\pi R = 2\pi \sqrt {13} \,\,\left( {{\rm{cm}}} \right).\]

Vậy chiều dài của đoạn thép dùng để làm khung nửa đường tròn là \[\frac{C}{2} = \frac{{2\pi \sqrt {13} }}{2} \approx 11,33\,\,\left( {{\rm{cm}}} \right).\]

Câu 2

Lời giải

Đáp án đúng là: C

Cho tứ giác  A B C D  nội tiếp đường tròn  ( O ; R ) .  Biết rằng  ˆ A B C = 70 ∘ ; ˆ O D C = 50 ∘ .  Số đo  ˆ A O D  là (ảnh 1)

Tứ giác \[ABCD\] nội tiếp đường tròn \[\left( {O;{\rm{ }}R} \right)\] có: \[\widehat {ADC} + \widehat {ABC} = 180^\circ \] (tổng hai góc đối của tứ giác nội tiếp).

Suy ra \[\widehat {ADC} = 180^\circ - \widehat {ABC} = 180^\circ - 70^\circ = 110^\circ .\]

Ta có \[\widehat {ADO} + \widehat {ODC} = \widehat {ADC}\,.\]

Suy ra \[\widehat {ADO} = \widehat {ADC} - \widehat {ODC} = 110^\circ - 50^\circ = 60^\circ .\]

Tam giác \[OAD\] cân tại \[O\] (do \[OA = OD = R\]) có \[\widehat {ADO} = 60^\circ \] nên \[\Delta OAD\] là tam giác đều. Do đó \[\widehat {AOD}\, = 60^\circ .\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP