Câu hỏi:

14/11/2024 1,131

I. Nhận biết

Khẳng định nào sau đây là sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Phương án A, B, C đúng.

Phương án D sai. Sửa lại: Đường tròn ngoại tiếp một tam giác là đường tròn đi qua cả ba đỉnh của tam giác đó.

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

 Người ta cần xây dựng một khung cổng hình chữ nhật rộng 4 m và cao 3 m, bên ngoài khung cổng được bao bởi một khung thép dạng nửa hình tròn (như hình vẽ).Chiều dài của đoạn thép dùng để làm  (ảnh 2)

Gọi \[ABCD\] là khung cổng hình chữ nhật.

Vẽ hình chữ nhật \[ABEF\] (hình vẽ) và \[O\] là giao điểm của hai đường chéo \[AE,{\rm{ }}BF.\]

Khi đó ta có \[AF = 2AD = 2 \cdot 3 = 6{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\]

Tam giác \[ABF\] vuông tại A, theo định lí Pythagore, ta có:

\[B{F^2} = A{F^2} + A{B^2} = {6^2} + {4^2} = 52.\]

Do đó \[BF = \sqrt {52} = 2\sqrt {13} \,\,\left( {{\rm{cm}}} \right).\]

Vì vậy bán kính đường tròn ngoại tiếp hình chữ nhật \[ABEF\] là: \[R = \frac{{BF}}{2} = \sqrt {13} \,\,\left( {{\rm{cm}}} \right).\]

Chu vi đường tròn ngoại tiếp hình chữ nhật \[ABEF\] là: \[C = 2\pi R = 2\pi \sqrt {13} \,\,\left( {{\rm{cm}}} \right).\]

Vậy chiều dài của đoạn thép dùng để làm khung nửa đường tròn là \[\frac{C}{2} = \frac{{2\pi \sqrt {13} }}{2} \approx 11,33\,\,\left( {{\rm{cm}}} \right).\]

Câu 2

Cho tứ giác \[ABCD\] nội tiếp đường tròn \[\left( {O;{\rm{ }}R} \right).\] Biết rằng \[\widehat {ABC} = 70^\circ ;\,\,\widehat {ODC} = 50^\circ .\] Số đo \[\widehat {AOD}\] là

Lời giải

Đáp án đúng là: C

Cho tứ giác  A B C D  nội tiếp đường tròn  ( O ; R ) .  Biết rằng  ˆ A B C = 70 ∘ ; ˆ O D C = 50 ∘ .  Số đo  ˆ A O D  là (ảnh 1)

Tứ giác \[ABCD\] nội tiếp đường tròn \[\left( {O;{\rm{ }}R} \right)\] có: \[\widehat {ADC} + \widehat {ABC} = 180^\circ \] (tổng hai góc đối của tứ giác nội tiếp).

Suy ra \[\widehat {ADC} = 180^\circ - \widehat {ABC} = 180^\circ - 70^\circ = 110^\circ .\]

Ta có \[\widehat {ADO} + \widehat {ODC} = \widehat {ADC}\,.\]

Suy ra \[\widehat {ADO} = \widehat {ADC} - \widehat {ODC} = 110^\circ - 50^\circ = 60^\circ .\]

Tam giác \[OAD\] cân tại \[O\] (do \[OA = OD = R\]) có \[\widehat {ADO} = 60^\circ \] nên \[\Delta OAD\] là tam giác đều. Do đó \[\widehat {AOD}\, = 60^\circ .\]

Câu 3

Tam giác đều \[ABC\] nội tiếp đường tròn. Khi đó góc \[AOB\] bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tứ giác \[ABCD\] nội tiếp đường tròn \[\left( O \right)\] sao cho tam giác \[ABC\] nhọn. Hai đường cao \[AM,{\rm{ }}CN\] của tam giác \[ABC\] cắt nhau tại \[H.\] Khẳng định nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Tứ giác nội tiếp đường tròn là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP