Câu hỏi:

14/11/2024 31

Cho đa giác đều 9 cạnh có tâm \[O\] và \[AB,{\rm{ }}BC\] là hai cạnh của đa giác (như hình vẽ).

Cho đa giác đều 9 cạnh có tâm  O  và  A B , B C  là hai cạnh của đa giác (như hình vẽ). (ảnh 1)

Số đo các góc \[\widehat {AOB}\,,\,\,\widehat {ABO}\,,\,\,\widehat {ABC}\] lần lượt là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

a) Đa giác đều đã cho có 9 cạnh nên đa giác đều này có 9 đỉnh.

Chín đỉnh của đa giác đều đã cho chia đường tròn \[\left( O \right)\] thành chín cung bằng nhau, mỗi cung có số đo bằng \[\frac{{360^\circ }}{9} = 40^\circ .\]

Tức là, \[\widehat {AOB} = \widehat {BOC} = 40^\circ .\]

Vì \[OA = OB\] nên tam giác \[AOB\] cân tại \[O.\] Suy ra \[\widehat {OAB} = \widehat {ABO}\,.\]

Tam giác \[AOB\] có: \[\widehat {AOB} + \widehat {OAB} + \widehat {ABO} = 180^\circ \] (tổng ba góc của một tam giác)

Suy ra \[2\widehat {ABO} = 180^\circ - \widehat {AOB} = 180^\circ - 40^\circ = 140^\circ .\]

Do đó \[\widehat {OAB} = \widehat {ABO} = \frac{{140^\circ }}{2} = 70^\circ .\]

Thực hiện tương tự, ta được \[\widehat {OBC} = \widehat {OCB} = 70^\circ .\]

Ta có \[\widehat {ABC} = \widehat {ABO} + \widehat {OBC} = 70^\circ + 70^\circ = 140^\circ .\]

Vậy \[\widehat {AOB} = 40^\circ ;\,\,\widehat {ABO} = 70^\circ ;\,\,\widehat {ABC} = 140^\circ .\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

III. Vận dụng

Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai?

Xem đáp án » 14/11/2024 61

Câu 2:

Cho tam giác đều \[ABC\], các đường cao \[AD{\rm{ }},{\rm{ }}BE{\rm{ }},{\rm{ }}CF\] cắt nhau tại H . Gọi \[I{\rm{ }},{\rm{ }}K{\rm{ }},{\rm{ }}M\] theo thứ tự là trung điểm của \[HA{\rm{ }},{\rm{ }}HB{\rm{ }},{\rm{ }}HC\]. Khẳng định nào sau đây là đúng?

Xem đáp án » 14/11/2024 26

Câu 3:

Phát biểu nào sau đây đúng nhất?

Xem đáp án » 14/11/2024 22

Câu 4:

Cho lục giác đều \[ABCDEF\] tâm \(O\) biết \[OA = 4{\rm{ cm}}.\] Độ dài mỗi cạnh của lục giác đều \[ABCDEF\] là bao nhiêu?

Cho lục giác đều  A B C D E F  tâm  O  biết  O A = 4 c m .  Độ dài mỗi cạnh của lục giác đều  A B C D E F  là bao nhiêu? (ảnh 1)

Xem đáp án » 14/11/2024 22

Câu 5:

Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Các phép quay tâm \[O\] giữ nguyên hình ngũ giác đều là

Xem đáp án » 14/11/2024 19

Câu 6:

Cho hình vuông \[ABCD\] tâm \[O.\] Phép quay ngược chiều 180° tâm O biến các điểm \[A,\,\,B,\,\,C,\,\,D\] thành các điểm nào?

Xem đáp án » 14/11/2024 18

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store