Câu hỏi:

14/11/2024 1,136

Cho ngũ giác đều \[MNPQR\] có tâm \[O.\] Phép quay nào với tâm \[O\] biến ngũ giác đều \[MNPQR\] thành chính nó?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho ngũ giác đều  M N P Q R  có tâm  O .  Phép quay nào với tâm  O  biến ngũ giác đều  M N P Q R  thành chính nó? (ảnh 1)

Các phép quay giữ nguyên ngũ giác đều \[MNPQR\] là:

⦁ Năm phép quay thuận chiều \[\alpha ^\circ \] tâm \[O\] với \[\alpha ^\circ \] lần lượt nhận các giá trị:

\[\alpha _1^o = \frac{{360^\circ }}{5} = 72^\circ ;\,\,\alpha _2^o = \frac{{2 \cdot 360^\circ }}{5} = 144^\circ ;\,\,\alpha _3^o = \frac{{3 \cdot 360^\circ }}{5} = 216^\circ ;\]

\[\alpha _4^o = \frac{{4 \cdot 360^\circ }}{5} = 288^\circ ;\,\,\alpha _5^o = \frac{{5 \cdot 360^\circ }}{5} = 360^\circ .\]

⦁ Ba phép quay ngược chiều \[\alpha ^\circ \] tâm \[O\] với \[\alpha ^\circ \] lần lượt nhận các giá trị:

\[\alpha _1^o = \frac{{360^\circ }}{5} = 72^\circ ;\,\,\alpha _2^o = \frac{{2 \cdot 360^\circ }}{5} = 144^\circ ;\,\,\alpha _3^o = \frac{{3 \cdot 360^\circ }}{5} = 216^\circ ;\]

\[\alpha _4^o = \frac{{4 \cdot 360^\circ }}{5} = 288^\circ ;\,\,\alpha _5^o = \frac{{5 \cdot 360^\circ }}{5} = 360^\circ .\]

Do đó ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: D

Cho hình vuông  A B C D  tâm  O .  Phép quay ngược chiều 180° tâm O biến các điểm  A , B , C , D  thành các điểm nào? (ảnh 1)

Phép quay ngược chiều 180° tâm O biến các điểm \[A,\,\,B,\,\,C,\,\,D\] theo thứ tự thành các điểm \[C,{\rm{ }}D,{\rm{ }}A,{\rm{ }}B.\]

Câu 2

Lời giải

Đáp án đúng là: B

a) Đa giác đều đã cho có 9 cạnh nên đa giác đều này có 9 đỉnh.

Chín đỉnh của đa giác đều đã cho chia đường tròn \[\left( O \right)\] thành chín cung bằng nhau, mỗi cung có số đo bằng \[\frac{{360^\circ }}{9} = 40^\circ .\]

Tức là, \[\widehat {AOB} = \widehat {BOC} = 40^\circ .\]

Vì \[OA = OB\] nên tam giác \[AOB\] cân tại \[O.\] Suy ra \[\widehat {OAB} = \widehat {ABO}\,.\]

Tam giác \[AOB\] có: \[\widehat {AOB} + \widehat {OAB} + \widehat {ABO} = 180^\circ \] (tổng ba góc của một tam giác)

Suy ra \[2\widehat {ABO} = 180^\circ - \widehat {AOB} = 180^\circ - 40^\circ = 140^\circ .\]

Do đó \[\widehat {OAB} = \widehat {ABO} = \frac{{140^\circ }}{2} = 70^\circ .\]

Thực hiện tương tự, ta được \[\widehat {OBC} = \widehat {OCB} = 70^\circ .\]

Ta có \[\widehat {ABC} = \widehat {ABO} + \widehat {OBC} = 70^\circ + 70^\circ = 140^\circ .\]

Vậy \[\widehat {AOB} = 40^\circ ;\,\,\widehat {ABO} = 70^\circ ;\,\,\widehat {ABC} = 140^\circ .\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP