Câu hỏi:
14/11/2024 3,070Bác An có một đống cát dạng hình nón cao \[2{\rm{\;m}},\] đường kính \[2{\rm{\;m}}.\] Bác tính rằng để sửa xong ngôi nhà của mình cần ít nhất \[30{\rm{\;}}{{\rm{m}}^3}\] cát. Hỏi bác An cần mua bổ sung ít nhất bao nhiêu xe cát nữa để đủ cát sửa nhà, biết rằng thùng xe có dạng hình hộp chữ nhật có chiều dài, chiều rộng và chiều cao lần lượt là \(4{\rm{\;m}},\,\,1,7{\rm{\;m}},\,\,1,8{\rm{\;m}}\) (lấy \[\pi \approx 3,14\])?
Quảng cáo
Trả lời:
Đáp án đúng là: B
Bán kính của đống cát bác An có là: \[r = \frac{2}{2} = 1{\rm{\;(m)}}{\rm{.}}\]
Thể tích đống cát bác An có là:
\[V = \frac{1}{3}\pi \cdot {1^2} \cdot 2 = \frac{2}{3}\pi \approx \frac{2}{3} \cdot 3,14 \approx 2,093{\rm{\;(}}{{\rm{m}}^3}{\rm{)}}{\rm{.}}\]
Số \[{{\rm{m}}^3}\] cát ít nhất bác An cần mua bổ sung để đủ cát sửa nhà là: \[30 - 2,093 = 27,907\,\,({{\rm{m}}^3}).\]
Thể tích của thùng xe cát là: \(4 \cdot 1,7 \cdot 1,8 = 12,24{\rm{\;(}}{{\rm{m}}^3}{\rm{)}}{\rm{.}}\)
Ta có: \(27,907:12,24 \approx 2,28\).
Như vậy bác An cần mua bổ sung thêm ít nhất \(3\) xe cát để đủ cát sửa nhà.
Vậy ta chọn phương án B.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Vì chiều cao của hình nón bằng bán kính đáy nên ta có \[h = r.\]
Công thức tính thể tích của hình nón là: \(V = \frac{1}{3}\pi {r^2}h\)
Suy ra \[\frac{1}{3}\pi {r^2}h = 9\pi .\]
Hay \[\frac{1}{3}\pi {h^2} \cdot h = 9\pi .\]
Do đó \[{h^3} = 27\] nên \[h = \sqrt[3]{{27}} = 3.\]
Vậy ta chọn phương án A.
Lời giải
Đáp án đúng là: A
Ta có diện tích đáy của hình nón bằng hiệu diện tích toàn phần trừ đi diện tích xung quanh, và bằng \(115\pi - 65\pi = 50\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Công thức tính diện tích đáy của hình nón là: \[S = \pi {r^2}{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Suy ra \[\pi {r^2} = 50\pi .\]
Nên \[{r^2} = 50,\] do đó \[r = 5\sqrt 2 {\rm{\;(cm)}}{\rm{.}}\]
Gọi \(l{\rm{\;(cm),}}\,\,{\rm{h\;(cm)}}\) lần lượt là độ dài đường sinh và chiều cao của hình nón.
Ta có công thức tính diện tích xung quanh của hình nón là: \({S_{xq}} = \pi rl{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Suy ra \(\pi \cdot 5\sqrt 2 \cdot l = 65\pi \)
Do đó \[l = \frac{{13\sqrt 2 }}{2}{\rm{\;(cm)}}{\rm{.}}\]
Ta có: \[{l^2} = {h^2} + {r^2}.\] Suy ra \[{h^2} = {l^2} - {r^2} = {\left( {\frac{{13\sqrt 2 }}{2}} \right)^2} - {\left( {5\sqrt 2 } \right)^2} = \frac{{69}}{2}.\]
Vì vậy \[h = \frac{{\sqrt {138} }}{2} \approx 5,87{\rm{\;(cm)}}{\rm{.}}\]
Vậy ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.