Câu hỏi:

09/12/2024 234

Cho hàm số y = f(x) có đồ thị là đường cong hình bên

Cho hàm số y = f(x) có đồ thị là đường cong hình bên  Hàm số đã cho nghịch biến trên khoảng nào dưới đây?      (ảnh 1)

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Dựa vào đồ thị hàm số, hàm số nghịch biến trên khoảng (0;1).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hằng ngày mực nước của một con kênh lên xuống theo thủy triều. Độ sâu \(h\,\,\left( {\rm{m}} \right)\) của mực nước trong kênh tại thời điểm \(t\,\,\left( {\rm{h}} \right)\,\,\left( {0 \le t \le 24} \right)\) trong ngày được xác định bởi công thức \(h = 2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) + 5\). Gọi \(\left( {a\,;\,b} \right)\) là khoảng thời gian trong ngày mà độ sâu của mực nước trong kênh tăng dần. Tính giá trị của \(a + b\).

Xem đáp án » 11/12/2024 2,638

Câu 2:

Cho hàm số bậc ba \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ dưới đây :

Cho hàm số bậc ba (y =( x = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ dưới đây : (ảnh 1)

a) Hàm số đạt cực đại tại\(x = 2\).

b) Có 3 giá trị nguyên của \(m\)để phương trình \(f\left( x \right) = m\)có 3 nghiệm phân biệt .

c) Đường cong trên là đồ thị hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 2\).

d) Gọi \(M\)\(m\)lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = f\left( {2\sin x + 1} \right)\)thì \(M + m = 5\).

Xem đáp án » 11/12/2024 891

Câu 3:

Một ông nông dân có \(240\)m hàng rào và muốn rào lại cánh đồng hình chữ nhật tiếp giáp với một con sông. Ông không cần rào cho phía giáp bờ sông. Hỏi ông có thể rào được cánh đồng với diện tích lớn nhất là bao nhiêu m2?

Xem đáp án » 11/12/2024 687

Câu 4:

Trong không gian tọa độ \(Oxyz\), gọi \(A,B,C\) lần lượt là hình chiếu của \[M\left( {3;3;3} \right)\] lên các trục tọa độ \(Ox,Oy,Oz\). Giả sử \[H\left( {a;b;c} \right)\] là trực tâm tam giác \(ABC\). Tính \[{a^2} + {b^2} + {c^2}\].

Xem đáp án » 11/12/2024 566

Câu 5:

Trong không gian với hệ tọa độ \(Oxyz\), cho hai vectơ \(\overrightarrow u = \left( {3; - 1;1} \right)\)\(\overrightarrow v = \left( {1;2; - 2} \right)\). Độ dài của vectơ \(\overrightarrow u + \overrightarrow v \)

Xem đáp án » 11/12/2024 326

Câu 6:

Hàm số y=log510xx2 đồng biến trên khoảng nào trong các khoảng dưới đây?

Xem đáp án » 09/12/2024 289

Câu 7:

Một doanh nghiệp cần sản xuất một mặt hàng trong đúng 10 ngày và phải sử dụng hai máy \(A\)\(B\). Máy \(A\) làm việc trong \(x\) ngày cho số tiền lãi là \({x^2} + 2x\) (triệu đồng), máy \(B\) làm việc trong \(y\) ngày cho số tiền lãi là \( - 27{y^2} + 326y\) (triệu đồng). Hỏi doanh nghiệp đó cần sử dụng máy \(A\) làm việc trong bao nhiêu ngày để số tiền lãi thu được nhiều nhất? Biết rằng hai máy \(A\)\(B\) không đồng thời làm việc và máy \(B\) làm việc không quá 6 ngày.

Xem đáp án » 11/12/2024 282

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store