Câu hỏi:
11/12/2024 72Đại lượng nào đo độ phân tán của nửa giữa của mẫu số liệu, không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Khoảng tứ phân vị dùng để đo độ phân tán của nửa giữa của mẫu số liệu, không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một công ty viễn thông đang lên kế hoạch xây dựng một tháp viễn thông tại một thành phố để cung cấp dịch dụ tốt hơn. Công ty cần xác định vị trí của tháp sao cho có thể phủ sóng hiệu quả đến ba toà nhà quan trọng trong thành phố. Giả sử các toà nhà này được đặt tại các vị trí có toạ độ như sau:
Toà nhà \(A\left( {0;0;0} \right)\)
Toà nhà \(B\left( {6;0;0} \right)\)
Toà nhà \(C\left( {3;\sqrt 3 ;2\sqrt 6 } \right)\)
Tháp viễn thông phải đặt ở vị trí sao cho tổng khoảng cách từ tháp đến 3 toà nhà là nhỏ nhất. Khi đó tổng khoảng cách từ vị trí của tháp đến ba toà nhà bằng bao nhiêu? (kết quả làm tròn đến hàng phần trăm)
Câu 2:
Trong không gian với hệ trục tọa độ \(Oxyz\), cho hình hộp chữ nhật \(ABCD.A'B'C'D'\)có điểm \(A\) trùng với gốc tọa độ \(O\), điểm \(B\) nằm trên tia \(Ox\), điểm \(D\)nằm trên tia \(Oy\), điểm \(A'\)nằm trên tia \(Oz\). Biết \(AB = 2,\,AD = 4,\,AA' = 3\). Gọi tọa độ của \(C'\) là \(\left( {a;\,b;\,c} \right)\) khi đó biểu thức \(a + b - c\) có giá trị là.
Câu 3:
Bác Tôm có một cái ao có diện tích 50 m2 để nuôi cá. Vụ vừa qua bác nuôi với mật độ 20 con/m2 và thu được tất cả 1,5 tấn cá thành phẩm. Theo kinh nghiệm nuôi cá thu được, bác thấy cứ thả giảm đi 8 con/m2 thì tương ứng sẽ có mỗi con cá thành phẩm thu được tăng thêm 0,5 kg. Hỏi vụ tới bác phải mua bao nhiêu con cá giống để đạt được tổng khối lượng cá thành phẩm cao nhất? (giả sử không có hao hụt trong quá trình nuôi).
Câu 4:
Cho hình chữ nhật \(ABCD\) có hai đỉnh di động trên đồ thị hàm số \(y = 9 - {x^2}\) trên khoảng \(\left( { - 3;3} \right)\), hai đỉnh còn lại nằm trên trục hoành (tham khảo hình vẽ). Tìm diện tích lớn nhất của hình chữ nhật \(ABCD\) (kết quả làm tròn đến hàng phần mười).
Câu 5:
Cho tứ diện đều \(ABCD\) cạnh \(a\). \(E\) là điểm trên đoạn \(CD\) sao cho \(ED = 2CE\).
a) Có \[6\] vectơ (khác vectơ \[\overrightarrow 0 \]) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện.
b) Góc giữa hai vectơ \[\overrightarrow {AB\,} \] và \[\overrightarrow {BC\,} \] bằng \[60^\circ \].
c) Nếu \[\overrightarrow {BE\,} = m\overrightarrow {BA\,} + n\overrightarrow {BC\,} + p\overrightarrow {BD\,} \] thì \[m + n + p = \frac{2}{3}\].
d) Tích vô hướng \(\overrightarrow {AD} .\overrightarrow {BE} = \frac{{{a^2}}}{6}\).
Câu 6:
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình sau. Phương trình \[f\left( {f\left( x \right)} \right) = 0\] có bao nhiêu nghiệm thực phân biệt?
Câu 7:
Nồng độ thuốc \(C\left( t \right)\) tính theo mg/cm3 trong máu của bệnh nhân được tính bởi \(C\left( t \right) = \frac{{0,05t}}{{{t^2} + t + 1}}\), trong đó \(t\) là thời gian tính theo giờ kể từ khi tiêm cho bệnh nhân.
a) Hàm số \(C\left( t \right)\) có đạo hàm \(C'\left( t \right) = \frac{{1 - {t^2}}}{{20{{\left( {{t^2} + t + 1} \right)}^2}}},t \ge 0\).
b) Sau khi tiêm, nồng độ thuốc trong máu của bệnh nhân giảm dần theo thời gian.
c) Nồng độ thuốc trong máu lớn nhất ở thời điểm 1 giờ sau khi tiêm.
d) Có thời điểm nồng độ trong máu của bệnh nhân đạt 0,02 mg/cm3.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!